R Co-funded by the
Ll Erasmus+ Programme We’re on the Web!
Eat of the European Union |
Visit us at:

https:/ /makers-project.eu

GETTING STARTED WITH
PYTHON

Creative Commons licence -
Attribution-NonCommercial-
ShareAlike CC BY-NC-SA

Year of publication: 2022

Editor: Gergana Cisarova-Dimitrova

Project “MAKER SCHOOLS:
Enhancing Student Creativity and

STEM Engagement by Integrating 3D
." MAKER SCHOOLS Design and Programming into

3D Design for Education SCCOndal’y SChOOl Learning”
(Agreement no. 2020-1-BG01-KA201-
079274)

.” MAKER SCHOOLS

Contents
Why learn PYthON? ..ottt 4
Getting STALtEdvvieceiiiicic s 4
Install an Integrated Development Environment (IDE)ccooviiiiiniiiiiccs 4
Create a project in PyCharm ... 7
Register on HackerRank to practiCe.......ouviiiiiiiniiiiiniiiccsccscs s 8
Create your fIrst PIOGIAM....c.cuoiiuiiiiicieiiieieiriceiesce et 8
Variables and datatyPesccciiiiiiiiniiiiii s 10
Starting With the DASICS ..c.ciiiiiiiiiici e 11
Working with the CONSOLE ... s 11
ALIHMETC OPELALIONS c..eeviveieiiiieciteticee ettt sennas 13
Printing on the CONSOLE ..o 15
IMPOTLtiNg HDIATIESvuieiiiiieieiiiiceiri et 17
DEBUGZING ...t s 18
Working With NUMDETS......ccciiiiiic s 19
Rounding NUMDELScciiiiiiiiii e 19
ADSOIULE VAIUE ..ot 19
CoNdItioNal STALEMEIES ...cuvuveieieieiiciiiiieieieieieeee ettt b bbb bbb s s s 19
Checking if a condition is True Of FalSe.....cccoviiiiriniiieiiiniiciiieciriccerceecene e 20
Using conditional StAtEMENTScucuiiiuiiiiiiniiiiiiiiieiiicee e ssans 23
Initialization and lifetime of variables in Python; global vs. local variablescccccovvieueunennee. 29
LoOps 11 PYthOMN ... 29
FOrIoOP .. 30
Examples of using fOr IoOPSccciiiiiiiiiiiiiiic e 32
W DELE JOOP .o 34
INESLEA LOOPS .ttt 36
WOLKING WIH TEX ..ttt 37
Basic fUNCHONS ...cviiiiiiiiiic bbb 37
More about fOrmatting StrNGSccceuririimiriiiiiieriiieriee e esasaes 39
LLISES e 40
TUPLES ...t 48
SEES ettt 52
DICHONALIES «..eviiiiitii bbbt 54

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
kil il Commission cannot be beld responsible for any use which may be made of the information
of the European Union . .

contained therein.

." MAKER SCHOOLS

FUNCHOMNS ¢ttt ettt a et ns 58
ODbjects ANd CIASSESviuviiiiiiiicc s 60
CLASSES vttt ettt n b 61
INSTANCES OF CLASSES ocvvivivvieieiiiriririrrir ettt ettt ettt bbb sesenes 61
Concluding reMArksccoiiiiiiiiiii s 64

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
LS Erasmus+ Programme Fos ; ; ; ;

Sl of the European Union Commission cannot be beld responsible for any use which may be made of the information

contained therein.

." MAKER SCHOOLS

Python is a programming language released in 1991. It is popular and easy to learn and is
currently in high demand on the job market. Its popularity has been rising because it is widely
used in data science, artificial intelligence and machine learning. If you wish to work on artificial
intelligence and machine learning in the future, learning Python is a must for you. Python is
versatile and can be used both for simple and for very complex tasks. It can be used for
developing the back-end part of a web application (on a server), but it cannot be used to develop
the front-end (what the user sees and interacts with on the browser). You can use Python to
connect to databases. Python works on different platforms (Windows, Mac, Linux, Raspberry Pi,
etc.).

Why learn Python?

Getting started

Install an Integrated Development Environment (IDE)

Before you start learning Python, you first need to install Python itself if your computer does not
already have it installed (most Windows computers will not).

Download the last version suitable for your operational system from
https:/ /www.python.org/downloads/. If you wish to directly download the latest version for
Windows as of January 2022, click here.

Start the standard installation as in the screenshot below and follow the instructions.

% Python 3.10.2 (64-bit) Setup - *

Install Python 3.10.2 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

— Install Now
D\Users\GerganalAppDataiLocal\Programs'Python' Python310

Includes IDLE, pip and documentation
Creates shortcuts and file associations

— Customize installation
Choose location and features

python
for Install launcher for all users (recommended)

windows [Add Python 3.10 to PATH Cancel

Python can be run even from the command-line console in Windows. However, this would not
be a pleasant experience. In order to work easily with Python, it is recommended to choose and
install an Integrated Development Environment (IDE) - a specialized software that allows you to
compile and run Python scrips, create and save files and projects, etc. There are many IDE
options that you can easily find on the internet. The choice of IDE is usually a matter of personal
preferences. If you are already using one popular IDE for another language (e.g. Visual Studio
Code or any JetBrains IDE) you are typically used to its interface and would use the same for
Python if it is supported. For learning Python, we recommend using Visual Studio Code or
PyCharm Community (Community is the free version and there is also a paid version with more
features).

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

https://www.python.org/ftp/python/3.10.2/python-3.10.2-amd64.exe

ﬁ MAKER SCHOOLS

PyCharm can be a great help for beginners as it suggests corrections to typical mistakes and has
powerful features for suggesting code while you type. The disadvantages are that the program
takes a lot of memory and it requires some practice to learn how to use all the useful features.
Once you do learn, however, writing Python code with PyCharm will be faster and easier than
with some other IDEs. We recommend using the Thonny IDE if you are using Python for 3D
design due to the possibility to integrate it with 3D software (see the Module Using Python for
Procedural 3D Content Generation for 3D Printing). Below, we guide you through the installation of
PyCharm Community on Windows.

Download the PyCharm Community installation file from
https://www.jetbrains.com/pvcharm/download /#section=windows.

JET
BRAINS

Download PyCharm

Professional Community

For pure Python development

Download

Get the Toolbox App to download PyCharm and
its future updates with ease

Once you start the installation, the following window will open.

Eq PyCharm Community Edition Setup — >

P C Welcome to PyCharm Community
Edition Setup

Setup will guide you through the installation of PyCharm
Community Edition.

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue.

| Mext = | DCan::el |

The Eurgpean Commission's support for the production of this publication does not
AR Co-funded by the constitute an endorsement of the contents, which reflect the views only of the anthors, and the
PRIl Crasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information

* of the European Union . .
contained therein.

https://www.jetbrains.com/pycharm/download/#section=windows

3D Design for Education

ﬁ MAKER SCHOOLS

After clicking “Next” twice, you will encounter the following installation window. Select the

options as shown in the screenshot below:

ER PyCharm Community Edition Setup - x

e Installation Options
Configure your PyCharm Community Edition installation

Create Desktop Shortout Update PATH Variable (restart needed)

PyCharm)Community Edition (] add "bin" folder to the PATH

Update Context Menu

iﬁ-dd “Open Folder as Project™

Create Assodations

A py

Finalize the installation as suggested by the Installer. You are now ready to start using the IDE.
You can choose between dark and light modes and different color schemes any time, according
to personal preference. Press Ctrl+Alt+S to open the IDE settings and select Editor | Color
Scheme. Whenever you have trouble remembering how to use some features in this IDE, search
the internet. The IDE has a lot of useful features accessible through key combinations.

The Eurgpean Commission's support for the production of this publication does not

Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

MAKER SCHOOLS

3D Design for Education

Create a project in PyCharm

Welcome to PyCharm

Take a quick onboarding tour

Start Tour

In the window that opens, write the name of your project, leave everything else as suggested
(although you may wish to unclick the creation of the main.py welcome script), then click
“Create”.

nent using | &g} Virt

Create

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the

jgll Erasmus+ Programme -
< G this Enigean Unioh Com”.ﬂmoﬂ m@oz‘ be held responsible for any use which may be made of the information
contained therein.

.” MAKER SCHOOLS

Once the project is created, create a new python file by right-clicking on the name of the project
-> New -> Python File. Give your file a name, e.g. example.py.

Register on HackerRank to practice

In order to be able to solve exercises and to check if they are solved correctly, register on
HackerRank: https://www.hackerrank.com/dashboard.

In the Prepare section, you will find many challenges, starting from the simplest exercises to much
more complicated ones. Getting acquainted with HackerRank may even help you later on with
job interviews as applicants are sometimes given tasks in HackerRank to solve.

Create your first program

In the Python file you created, type the following command

To run the program, right-click anywhere on the file window and click “Run”. Alternatively, use
the Ctrl + Shift + F10 key combination.

‘‘‘‘‘‘

As you can see, your first program wrote Hello, World! on the console in the bottom of the
working window.

[P<] File Edit

startingWithPython1

=
> @

startin

rgana/PycharmProjects/startingWithPythonl/examples2.py

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

https://www.hackerrank.com/dashboard

’ MAKER SCHOOLS

3D Design for Education

If you have made any mistake in the syntax e.g. you have forgotten the opening or closing
quotation mark, the console will tell you so, and the exit code will be 1, instead of 0.

examples2.py

print (Hello World

startingWithPython: ripts\pythol f Gergana/PycharmPr /startingWithPythoni/

finished with exit cc

If the mistake is not in the syntax but the indentation before the command, the console will also
let you know by showing an Indentation Error.

File Edit

startingWithPython1 =

cripts\pytho :/Use gana/PycharmPro /startingWithPythonl/examples2.py

Now you can try to also test your program in HackerRank. Find the “Hello, World!” challenge,
and submit your code.

rRankl rrepare python introduction

Problem

Input Format
Output Format

Sample Output 0

Hello, World

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

’ MAKER SCHOOLS

. ’ 3D Design for Education

Similarly to other programming languages, Python programming relies on variables, which are
containers for storing data values. Variables have a name, a type and a value. There are seven
built-in datatypes in Python:

Variables and datatypes

* Binary types: memoryview, bytearray, bytes
® Boolean type: bool

= Set types: frozenset, set

= Mapping type: dict

= Sequence types: range, tuple, list

* Numeric types: complex, float, int

= Text type: str

There is no command for declaring a variable in Python, the variable is declared by assigning a
value to it. The assighment is done with a simple = sign.

The variable named var is assigned a value 5, and hence it is a numeric type.

A chain assignment is possible, where the same value can be assigned to several variables.

The three different variables x, y and z now all have a value 15.

In some languages, such as Java, a variable is declared to have a specific datatype (e.g. a string),
and while we can assign different values to this variable during its lifetime in the program, this
value has to be of this specific datatype. Python is a dynamic language and this is not necessary.
The datatype is not explicitly declared and it depends only on the value we assign and re-assign to
the variable. If a value of another type is assigned to an already declared variable, the datatype will
change. In the example below, notice how the class types printed on the console are changing as
we assign a new value.
File Edr factor Run Too
startingWithPython1 = g examp
- @ e

~ startin

(var)) # The value now is of class "number"

(var)) # The value now is of class "string"

startingWithPythonl\ve ripts\pythol (e /6ergana/PycharmProj /startingWithPythonl/examples.py

Process finished with exit

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information

* of the European Union . .
contained therein.

‘ MAKER SCHOOLS

3D Design for Education

Starting with the basics

Working with the console

The console works only with text. Whatever we print on the console is converted into text. In the
example above you already saw how we print on the console, namely with the print(omr variable)
command. Try it again with the code below and observe the result on the console.

var =

print(var)

We can also read whatever we have typed on the console and use it in our program. This is done
with the input() command. We can assign the value of the input to a variable and use it in the
program.

The code we show in the example below will read what the user writes on the console and then
print it back on the console (the text we input is in green, the printed text is standard grey).

v startin
int()
character_name = input()
int(character_name)

ipts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples.py

In a way, this was easy because we input text (“Jon Snow”) and Python automatically assigned it
to a str variable because it is a console input. But what if we want to read a number from the
console and assign it to a numeric variable. Since the data we input in the console is always text,
we need to convert it (cast it) into another datatype if we want to assign a numeric value to the
variable. Before we cast text to another datatype, we need to be sure the casting will be possible.
We cannot cast a text like “Jon Snow” to a numeric value. In the example below the variable 7um
will be a numeric and can be used as such.

= Novig

startingWithPython1 |
EHr @ e
startin
int(
data = input()
num = int(data)
int(num)

startingWithPythonl\ve on. :/Usi gana/PycharmpP /startingWithPythonl/ex

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the

bSG Erasmus+ Programme oo ; ; ; ;
I ot the Euipsen Uriion Com;f.ﬂwm cannot be held responsible for any use which may be made of the information
contained therein.

3D Design for Education

." MAKER SCHOOLS

Let us see another example below. This program will read two integers we type on the console
and will perform some basic arithmetic operations with them, namely addition (with the
operator), subtraction (with the — operator) and multiplying (with the * operator). We assign the
results of the arithmetic operations to variables and then we can print them. Below is the result
we will get. Remember, the input we typed is shown in green, and the result is shown in grey.

startingWithPython1
Er O e

v M startin

int(input())
int(input())

_sum = a + b
yrint(num_sum)
num_difference = a - b
yrint(num_difference)
num_product = a * b
yrint (num_product)

ts\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples.py
culate their sum, their difference and their product:

Process finished with exit code 8

Tip on useful PyCharm functionality:

In longer programs in PyCharm you can use the Ctrl+Alt+L key combination to quickly
format all your code automatically and minimize indentation errors.

We may also want to read floating numbers from the console. We can do that by casting the
input to float. Below we show how to read the number 3.14 from the console and then print it
back on the console.

examples2.py
) i\f(
user_input = input()
my_number = float(user_input)
yrint (my_number)

Type a floating number on the console:

3.14

Process finished with exit code 8

In the following example below we read two floating numbers typed by the user, which represent
the length of the two sides of a rectangle. We then calculate the area of the rectangle (S=a*b). In
order to read two floating numbers typed on the console one after the other, we need to create
two variables with the input() function. The program will wait for the user to input as many
numbers as we have planned to read and only then it will proceed to make the calculations. In
our example, the area of a rectangle with sides 3.14 and 1.2 is 3.768.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

MAKER SCHOOLS

3D Design for Education

File Edit Vi vigate efactor Run Tools elp startingWithPython1 - exa
startingWithPython1
g B @ e ;
= R 1 print("Type the length of the rectangle sides on the console:")
user_input_1 = input()
user_input_2 = input()
a = float(user_input_1)
= float(user_input_2)
rectangle_area = a x b

print(rectangle_area)

> il Extern:
P scratct 8

examples examples?
D:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingNithPythonl/examples2.py
Type the length of the rectangle sides on the console:

3.768

Process finished with exit code ©

L N P |

Tip on naming variables in Python:

By convention, Python variables are written as lowercase single letter, or lowercase word,
or a combination of lowercase words. Also by convention, once you are working in the
software industry, you will be expected to name your variables in English in order to
facilitate work in multinational teams. If more than one word is used, we separate words
with underscores to improve readability. This is called snake case style of naming. Using
more than one word in the variable name is a common practice when you want to
describe better what the variable is. This will help the next coder to understand your code
better. For example, it will allow you to differentiate between rectangle side and
triangle_side in a more complex program.

The snake case style is different from other styles used in other programming languages.
For example, in Java (which you may be familiar with from your Computer Science
classes) the convention is to use camel case, which would translate to rectangleSide and
triangleSide.

Following the naming convention is not compulsory for the Python programming
environment, so your program will run regardless of what you name your variables.
However, following the naming conventions will be expected once you start working in
the industry or if you are sharing your code with other coders, so it is advisable to get
used to them already while studying different programming languages.

Arithmetic operations

We have already used three of the 4 main operators for arithmetic operations in Python when we
exercised reading numbers from the console (see above):

+ Addition
- Subtraction
* Multiplication

Now we only need to learn more about division. You can use three different operators for
division in Python:

/ Regular division which will return the exact product of dividing two numbers, and it will
always be a floating number. Thus, the division 5/2 will return 2.5, while 4/2 will return

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
bSG Erasmus+ Programme I . . v . .
e of thiss Eutsean Ution Commission cannot be beld responsible for any use which may be made of the information

contained therein.

’ MAKER SCHOOLS

3D Design for Education

2.0.

// | Integer division (also known as floor division) which will divide the two numbers but
will round down the result to an integer (hence the name “floor”). Thus, the division
5//2 will return 2

Now try yourself in PyCharm how these two operators work.

Remember that division by 0 is not allowed and will produce a ZeroDivision error and the
program will terminate. This is important to keep in mind in your program if the variable that
you use could potentially receive the value 0. Below we show you examples of division with 0.

cts\startingWithPythonl /\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

E &

startingWithPython1

Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

finished with exit code 1

With this knowledge, you are ready to log into HackerRank and solve the Arithmetic Operations
Challenge and the Python: Division Challenge (make sure you have ticked the Easy difficulty
level).

Arithmetic Operators

ediate)

Python: Division

Loops

And now let us learn about the last type of division possible in Python.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

3D Design for Education

.” MAKER SCHOOLS

% Modulus division which will divide the numbers but will not return the product of the
division. It will only return the remainder of an integer division. Thus, the division
5%2 will return 1 because 2 is contained in 5 twice (2*2=4) but there is a remainder of
1 (4+1=5). On the other hand 4%2 will return 0, because 2 is contained in 4 twice
(2*¥2=4) and there is no remainder.

The modulo operator can be very handy when combined with integer division in cases
when we need to disintegrate numbers into hundreds, tens and ones, or when we need
to know if the number is even or odd.

File Edi

startingWithPyt

% examples2.py
17
b 5

\startingWithPythonl\venv\Scripts\python : /Users/Gergana/PycharmpP [startingWithPyth

Process finished with exit code @

Like with the integer and regular division, we cannot perform modulus division by 0 and we will
get a ZeroDivision error, which will terminate the whole program.

Printing on the console

We can use the variables we read from the console to print more complex texts. For example, the
following code will print “Welcome, [name provided by the user]”. We use the + operator to
combine the different parts of the text with the input variable. Be careful to add an empty space
after “Welcome,” or else you will print “Welcome,[name provided by the nser]!”.

File Edit)

startingWithPyt]

+ name +

\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

By default the print() command prints a new line after the printed text. However, you can change
this by indicating that the end of the print should be for example an empty space or no space at
all. You can do this by assigning the desired print ending to the end variable and inputting it as an
additional argument in the print() function. In the example below, we will print “Welcome, [#anze

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
SO Erasmus+ Programme s ; ; ; ;
Ol o the European Union Commission cannot be beld responsible for any use which may be made of the information

contained therein.

3D Design for Education

.” MAKER SCHOOLS

provided by the user|!” using this approach. The disadvantage of this approach is that we call the
print() function 3 times.

E i C or Run
startingWithPython1

Er @ e xamples2.py
I startin

print("Type t

name = input()
print("wel E
print(name,

print()

examples examples2
D:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
Type the name of the character:

Welcome, Jon Snow!

Process finished with exit code 8

15p on useful PyCharm functionality:

In PyCharm, you can quickly duplicate one line by placing your cursor anywhere over the
line you want to duplicate and pressing the Ctrl+D key combination. The code will be
duplicated right below the selected line. If you select a piece of code and then press
Ctrl+D, you will duplicate the selection. This helps to write code faster if the code is
repetitive.

It is a bit more complicated when we want to print variables that are numbers. In that case, to
convert the number into text, we use the str() function and input the name of the number
variable as an argument (by placing it inside the brackets of the function). It works for both
integers and floating numbers, as long as the input is cast to floating number by using
float(input()) .

age = int(input())

&

examples

D:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples.py
Type the name of the character:

Type the age of the character:

Jon Snow is 14 years old.

Process finished with exit code ©

Tip on simplifying code:

We do not need to first assign the input() result to a variable and then pass this variable as
an argument in the print() function. We can directly pass input() as an argument into the
print() function: i.e. print(input())

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

ﬁ MAKER SCHOOLS

Using the + operator for printing is intuitive but the code ends up being quite cluttered. While it
does not matter in this small example, imagine that you need to combine the text from 10
variables. .. Fortunately, there is a more streamlined way which is based on formatting the output
string (also known as string interpolation). Starting from Python 3.6, string interpolation can be
performed by placing the f symbol in front of the text string, and placing text and all the
variables’ placeholders between the quotation marks of the string. The placeholder for a variable
is made up of the variable name, placed inside cutly brackets, namely {varzable name). To
understand the approach, see the example below. We no longer need to worry about the +
operator or to add empty spaces. The variable names in the curly brackets will be neatly replaced
with the user input from the console. There are also other ways of formatting text, which we will
deal with in the Section “Working with Text

V startin

int(

name = input()
int(

age = int(input())

{name} {age}

startingWithPythonl\ven ip Y H ana/PycharmpPr! tartingWithPythonl/exam|
Type the nam

Type the age of the character:
At the start of the series A Song of Ice and Fire Jon Snow is 14 years old.

Process finished with exit code ©

Importing libraries

Python has a lot of libraries that contain a myriad of useful complex functions that are already
implemented and can simply be called and used in our programs. To do this, we need to only
import them in our program. This is done in the beginning of the Python file by using the import
keyword followed by the name of the library.

math

This simple statement will load all the standard mathematical constants and functions available in
the math library and we will be able to use them in our program.

In the example below we import the math library and we call two of its functions — ceil() and
floor(). They are called by adding their name after math with a dot notation: math.ceil(ozr nuniber)
rounds our floating number #p to the nearest integer, while math.floor(oxr number) rounds our
floating number down to the nearest integer.

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
SO Erasmus+ Programme T . . R A
e of thiss Eutsean Ution Commission cannot be beld responsible for any use which may be made of the information

contained therein.

N7

MAKER SCHOOLS

3D Design for Education

startingWithPython1

= =
> O

~ startii l = mﬁth
my_number = 25/4
(my_number)
(math.ceil(my_number))
(math.fLloor(my_number))

ts\startingWithPythonl ripts\python.exe D:/Usi gana/PycharmProj [startingWithPythonl/examples2.py

Debugging

When writing complex programs, we often need to be able to trace the execution of the program
step by step in order to find out where our algorithm is wrong. We can do this by restarting our
program not with the green arrow but with the icon that looks like a bug. In order to debug the
program, we need to specify a breaking point in the program, after which PyCharm will show us
the step-by-step execution. If we do not specify the break point, the program will run as usually.
We usually specify the breaking point in the place in the program right before we expect the
mistake to be. The breaking point is placed by simply clicking on the grey space on the left of the
program, as shown in the screenshot below. Once you start the debugging process, information
will be shown in the console to help you understand what happens with the different variables
and determine where the algorithm is wrong. You can move forward and backward in the
consecutive steps with the arrows above this information. To observe step-by-step the execution
of a separate code block, you need to choose “Step into” (it is very useful when you are
debugging loops, which we will learn soon). To move to the next block, you need to choose
“Step over”. Learning how to effectively debug usually takes some time, but with practice, you
will get better.

Icon for debugging

aer

Pressing the red square
it N stops the
) debugging process

answer == or answep ==
r answer ==

answer ==

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

ﬁ MAKER SCHOOLS

Working with numbers

Rounding numbers

Often in programs, we need to round numbers. We already learned about how we could round
numbers up or down to the nearest integer. More often, however, we need to return the number
with a specified number of decimal places (with a specific number of digits after the decimal
point). In Python this can be achieved in two ways, and the choice depends on the program and
what we do with the output. The first option is to use the round(wzy number, number of decimal places)
function, in which we need to pass as arguments the floating number and the number of decimal
places that we want to show. The second option is to use additional formatting during string
interpolation. This is shown below:

my_floating_number

In the above example, we can replace “2” with any number, depending on how many decimals
we want to show. Below you can see an example of formatting a specified number, and an
example of formatting a number passed in by a variable. Both approaches print the rounded p:
number.

File

startingWithPython1

Er @ fhe

~ I startin or =T
- M : — . i
rm 1 # If we need to hardcode a specific number, we will use this approach:

. - int(f"{3.14159:.3f}")

If we are reading the number from the console, we can use two different approaches:
int()
my_floating_number = float(input())
Approach 1: Using the round() function
rounded_num = (my_floating_number, 3)
int(rounded_num)
Approach 2: Using formatting

int(f"{my_floating_number:)

Gergana\PycharmPre \startingWithPython1\ven ipts\python.exe D:/Users/Gergana/PycharmProj /startingWithPythonl/examples.py

Absolute value

Sometimes in programs we need to use the absolute value of numbers — the value without regard
to the sign (i.e. the non-negative value of a number). This can be done using the abs(zy number)
function. In this way, abs(-5) will be equal to abs(5). Tty it yourself in PyCharm.

Conditional statements

Conditional statements are at the heart of programming algorithms as they allow us to make
decisions about how the program will proceed and what the program will do based on whether a
certain condition is True or False.

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
bSG Erasmus+ Programme NS ; ; ; ;
Ol o the European Union Commission cannot be beld responsible for any use which may be made of the information

contained therein.

MAKER SCHOOLS

3D Design for Education

Checking if a condition is True or False

In order to decide if a condition is True or False, we have to perform some checks that compare
values. The basic operators for such comparisons are:

Explanation Examples

Assume that:

a=20

b=40

== Equal Returns True if two values are equal print(a==Db) #False
and False if they are different print(2*a==b) #True

I= Not equal Returns True if two values are print(al=b) # True
different and False if they are equal print(al=2*b) # True

print(2*al=b) #False

> Greater than Returns True if the first value is print(a>b) # False
greater than the second value

print(b>a) #True
print(2*a>b) # False

>= Greater than or Returns True if the first value is print(a>=Db) # False
equal to greater than or equal to the second print(b>=2a) #True
value
print(2*a>=b) # True
< Less than Returns True if the first value is less print(a<b) # True

than the second value

print(b<a) # False
print(2*a<b) # False

<= Less than or equal ~ Returns True if the first value is less print(a<=Db) # True
to than or equal to the second value print(b<=a) # False

print(2*a<=b) # True

in Item presentina Evaluates if the specified item is in a 'o'in Jon' # True
sequence given sequence

Comparing numbers is similar to what we learn in basic Mathematics. However, it is also possible
to use these operators to compare different type of values, such as dates and strings. String
comparison in Python is done based on the characters in both strings, and the characters are
compared one by one. When different characters are found, Python compares their ASCII
values. To grasp this, you should be aware that a string is a sequence of characters (symbols).
Computers, however, do not understand characters — they store and manipulate all data as Os and
1s. Therefore, a character is identified by a binary number, as shown in the ASCII table below —
for each character we have a specific number.

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the anthors, and the
kil il Commission cannot be beld responsible for any use which may be made of the information
of the European Union . .

contained therein.

! 033 A 065 a 097

3D Design for Education

." MAKER SCHOOLS

00100001 01000001 01100001
o 034 00100010 B 066 01000010 b 098 01100010
035 00100011 C 067 01000011 c 099 01100011
$ 036 00100100 D 068 01000100 d 100 01100100
% 037 00100101 E 069 01000101 e 101 01100101
& 038 00100110 F 070 01000110 f 102 01100110
! 039 00100111 G 071 01000111 g 103 01100111
(040 00101000 H a72 01001000 h 104 01101000
) 041 00101001 I 073 01001001 i 105 01101001
. 042 00101010 J 074 01001010 i 106 01101010
+ 043 00101011 K 075 01001011 k 107 01101011
» 044 00101100 L 076 01001100 I i08 01101100
- 045 00101101 M 077 01001101 m 109 01101101
046 00101110 N 078 01001110 n 110 01101110
/ 047 00101111 o 079 01001111 o 111 01101111
0 048 00110000 P 080 01010000 p 112 01110000
1 049 00110001 Q 081 01010001 q 113 01110001
2 050 00110010 R o082 01010010 r 114 01110010
3 051 00110011 s 083 01010011 s 115 01110011
4 052 00110100 T 084 01010100 t 116 01110100
5 053 00110101 u 085 01010101 u 117 01110101
6 054 00110110 v 086 01010110 v 118 01110110
7 055 00110111 w 087 01010111 w 119 01110111
Source: https:/ towardsdatascience.com/ processing-text-with-unicode-in-python-eacc226886ch
The comparison using the == and the |= operators is quite intuitive. Two strings will be equal

only if all their characters are identical and are identically positioned. They will be different if
there is a single different character or the positioning of the characters is different. The
comparison is case sensitive because capital letters have different ASCII values than small letters.
Anagrams - words containing the same characters but in a different order will not be equal
because characters are compared one by one and positioning matters. See some examples below.

R Co-funded by the
WS Erasmus+ Programme
i of the European Union

The Eurgpean Commission's support for the production of this publication does not
constitute an endorsement of the contents, which reflect the views only of the authors, and the
Commission cannot be beld responsible for any use which may be made of the information

contained therein.

ingWithPyth

o
> @

v M startin |
v M ven

jords are

identical

’ MAKER SCHOOLS

3D Design for Education

rds are anagrams but they are not equal according to Python

finished with exit code ©

tartingWithPytho

/examples2.py

When using the >, <, >= and <= operators, the character with lower ASCII value is considered
to be smaller. Python will compare the ASCII values of the first diverging characters in the two
strings, and this value will decide which string is greater than the other. The values of the
characters after that make no difference. See the examples below.

File Edit View
startingWithPython1
¢ By © =
£ v B startingWithPyth (.
v e 3

> MLib

> I Scripts

i gitignore

lavigate Code Refactor Run Tools VCS Window Help startingWith

camples.py

examples.py. 8 conditional statement

print("g" > "

& pyvenv.cfg
& conditional sta
o examples.py
% Hallo-world.py
> 1lll External Libraries
Py Scratches and Cor i "sma P > "smallest")

Until alle"
After that "p"

print(

australian" > "Australia") # "a" has ASCII value

the
has ASCII value of 114,

ngs are identical.

which is less

@ ecamples

D:\Users\Gergana\PycharnProjects\startingWithPython1\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingiithPython1/examples.py
True

True
False

Process finished with exit code 0

Tip on True and False values of variables:

"g" has ASCII value of 103,

3Y

which

is more than the ASCII value of "A", which is 65

which is more than the ASCII value of "A", which is 65

than the ASCII

value of

, Which is 115

We can also evaluate a variable itself to True or False. If the variable has a value, it will
always evaluate as True. If it is declared as None, 0, -0,
as False. Thus we can use a variable to obtain a Boolean or we can use it in conditional
statements (we will learn about conditional statements in the very next section, so if you
do not understand this, go back to it. However, conditional statements are very similar in

all programming languages). See below.

(13N

, 7 or False, then it will evaluate

The Eurgpean Commission's support for the production of this publication does not

*, Co-funded by the

o
*
Erasmus+ Programme
*

* of the European Union . .
contained therein.

constitute an endorsement of the contents, which reflect the views only of the authors, and the
Commission cannot be beld responsible for any use which may be made of the information

’ MAKER SCHOOLS

3D Design for Education

[F] File Edit View e Code Refactor Run Toi
nples2.py

character_name = "" # Empty string
another_character_name = False

age =

new_age = -0

false_age = None

character_age = 14

print(bool(character_name))
print(bool(another_character_name))
print(bool(age))
print(bool(new_age))
print(bool(false_age))
print(bool(character_age)) # Only this will evaluate to True
°
g new_ageﬂ
print(new_age)
else:
print("This variable evaluates to False")
if new_age
Run: @ examples & examples2
» D:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
F False
False
False
False
False

True
This variable evaluates to False

m o 1E Y

Process finished with exit code @

iST0DO O Problems % Debug EH Terminal 2 Python Packages % Python Console

Tip on the None keyword:

None is keyword, which defines a null value or no value. We can assign None to a
variable. In a conditional statement we can also check if a variable is None. To do this we
compare the variable and None either with the = operator or with the keyword is. The
preferred syntax is the is keyword.

Refactor Run Tool ndow Help sta
amples2.py
character_name =
print("The name is not defined")

if character_name is None:
print("The name is not defined")

g Scratct

@ examples @ examples2
D:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
The name is not defined
The name is not defined

Process finished with exit code 8

Using conditional statements

Once we are able to decide if a condition is True or False, we can construct detailed
programming logic based on simple algorithms. To do this, we use of the following:

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
bSG Erasmus+ Programme I . . - . .
e of thiss Eutsean Ution Commission cannot be beld responsible for any use which may be made of the information

contained therein.

‘ MAKER SCHOOLS

3D Design for Education

= if statement

» if-else statement

= if-elif-else ladder

* nested if-else statements

When we use the if statement, we check the validity of the condition and on the basis of this we
decide whether a block of code will be executed. Let us say that we want the user to enter a
number and we notify them if the number is even. We can do this by using the modulus division
by 2. An even number would return no remainder, i.e. the result will be 0. Bellow you can see the
detailed syntax. Note that we use if and pass in it a statement that checks if a condition is True or
False. After this statement, we add colon and, on a new line, with an indent, we write the bloc of
code that we want to execute if the condition is True. If the condition is False, the code specified
after the colon will not be executed. In the example below, we first enter an even number on the
console, and we get the message. Then we enter an odd number, and we get no message.

File Edit View Navigate Code Refactor Run Tools VCS Window Help st

startingWithPython1 | [examples2.py

B> © Z = {%eamplespy © s examples2py
' v B startingWithPyth
v I venv
> MELib if user_number % 2 == 0:
> I Scripts
i .gitignore

user_number = int(input())
print("You have entered &

user_number = int(input())
if user_number % 2 ==

= print("You

e Hallo-world.py
> Il External Libraries
P9 Scratches and Cor

& examples2

D:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

You have entered an even number

Process finished with exit code @

[T [P ||

More often than not, however, when a condition is not True, we would like to execute a different
code block. If this is indeed the case, we should use the if-clse statement. The code block after
the else statement will execute if the condition is False. In the example below, let us create a
simple quiz game where the user is asked to input the capital of Australia. If the answer is correct,
we will show “Correct!”. If not, we will show “Incorrect. Try again”. Try the correct answer
yourself. Below we show what happens if we give an incorrect answer.

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information

* of the European Union . .
contained therein.

3D Design for Education

startingWithPytho
- o =
startin
[
>l
>
P answer =

if answer ==

(

startingWithPythonl\vel cripts\python.exe D:/Use ana/PycharmProj /startingWithPythonl/examples.py

ect. Try again

ocess finished with exit code ©

Of course, in more complex programs, we will have more complicated logic and we will need to
execute different code based on different input. In these cases, we have to use the if-clif-clse
ladder. The elif statement allows us to add as many alternative conditions as we need. When one
of them is True, a specific code is executed and the conditions in following elif statements will
not be checked. Then again, if none of the clif conditions are true, we specify what code will be
executed using the clse statement. Let us say that we want some text to be shown only to people
with a specific nationality — we will print “Welcome!” in different languages based on the
nationality of the user. See below how this logic is executed.

File Ed

startingWithPython1

£ v M startingWithPyth (. —
1 come! in the national 1la age for ks, Turks and Bulgaria
11l print Welcome! in English

print(" E i ~ nat 1)

answer = (input())

if answer == "T i
print("Ho

> Il External Librari .
P Scratches and Col elif answer

print("0o6p

elif answer

print("K

else:

print(

rs\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/6ergana/PycharmProjects/startingWithPythonl/examples2.py
our nationality?

ownu!

We can fine-tune the program to recognize the nationality even if someone writes it in small
letters only or writes the name of the country instead. To do this, we use the or operator when
evaluating whether the condition is True or False. We can allow the condition to be evaluated as
True in different cases. In our example, we specify that the program will write Welome! in
Bulgarian if the user enters either “Bulgarian” or “bulgarian” or “Bulgaria”.

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information

* of the European Union . .
contained therein.

’ MAKER SCHOOLS

’ MAKER SCHOOLS

3D Design for Education

File Edit View Navigate Code Refactor Run Jools VCS Window Help
startingWithPython1 . g examples2.py
E>x ©@ £ = examplespy % examples2.py
v I startingWithPyth (). ’ : s Y

| | v I venv
> BElLib # Our progr L print Welcome! in the national language for Greeks, Turks and Bulgarians.

> I Scripts # Fop

Pl # everyone e , it will print Welcome! in English.
A gt

& pyvenv.cfg print(is y y2")
& conditional sta i
example2 answer = (input())
B saneiesry if answer == "Tur or answer == "turkish" or answer ==
T cxamples2 py
P Hallo-world.py pPint("l 0
> 1llli External Libraries

P Serstehes and Cot elif answer = n" or answer == "bul an" or answer == "Bulga

print("

elif answer : : or answer == eek" or answer ==
print(" : el")

else:
print("Welc

else
@ examples2
D:\Users\Gergana\PycharmProjects\startingWithPython1\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
What is your nationality?

Do6pe pouwnu!

Process finished with exit code ©

In some cases, we need to develop even more complex algorithms that make decisions at several
levels. To achieve such complexity, we need to use nested if-clse statements. Let us say we want
the user to enter their gender and their age, and on that basis we will decide if they are “boy”,
“girl”, “woman”, or “man”. We will first check if the user is female or male, and then within each
option, we will further check the age. See the code below to understand how 7f-e/se statements are
nested and how the program decides which code to execute.

(

gender
EL[

JJif gender ==
Once the program enters this bloc of code, it will already know that the user is female and will further check the| age
if age < 18:
()
else:
()
End of the bloc

If the program enters this bloc of code, it will already know that the user is male and will further check the age|
if age < 18:

()

()
End of the bloc

s\startingWithPyth ripts\python.exe D:/U:] startingWithPython:

& Woman

Of course, we can also achieve the same without nested if-clse statements, by using if-clif
statement and combining the conditions with the and operator. We are showing this approach in
the code below. Choosing one or the other option is entirely up to your personal preferences.

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
LS Erasmus+ Programme -
e of thiss Eutsean Ution Commission cannot be beld responsible for any use which may be made of the information

contained therein.

3D Design for Education

Refactor Run Toc
e examples2.py

print("En
user_gender =
print("Ente 0
user_age = int(dir

if user_gender == "f" and user_age < 18:
> il External Libra . P
P Scratches anc print("girl")

elif user_gender == "f" and user_age >= 18:
print(an")

elif user_gender == "m" and user_age < 18:
print("b

else:

print("man")

examples

na\PycharmProjects\startingWithPythonl\ve ipts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples.p

Enter your a

LEL]

[(R P |

P ss finished wit

In any case, you should learn to use the logical operators and, or and not. The and operator
returns True if both conditions are True. The or operator returns True if at least one of the
conditions is correct. The not operator will return True if the condition is False. To see an
example of the use of the or operator, see the previous example about writing “Welcome!” in
different languages. Let us also give an example of the not operator. Let us write a program
which will ask for the users’ age and will not allow them to proceed using the program unless
they are at least 12 years old.

(] File Edit

startingWithPythonl

Er 6 = = mples.py 3 examples2.py
~ M startingWithPyth (.

print("F Y
user_age = int(input())

permitted = user_age >= 12
if not permitted:

print("You are not old eno

B Scratches and Co
if not permitted

Run: nple:
gana\PycharmP| tartingWithPythonl pythol gana/PycharmP tartingWithPythi

t your age:
ough to view thi

ss finished with exi]

In some cases, we would need a very complex logic when some conditions need to be combined
by using multiple operators and, or and not operators, and — when necessary for the logic to be

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information

* of the European Union . .
contained therein.

‘ MAKER SCHOOLS

3D Design for Education

ﬁ MAKER SCHOOLS

executed properly — encapsulated in parentheses () to define the order in which the evaluation
should take place. In the example below, we want to check if a number is valid. We define a valid
number as an odd number that is either between 1 and 50 or between 200 and 300. To write this
code, we first check if a) a number is between 1 and 50 or between 200 and 300, and then we
check if b) it is an odd number (for an odd number modulus division by 2 will return 1). The first
condition itself includes two conditions, so we will encapsulate them into parentheses before the
use the and operator.

Refactor Run

s Hr O = - n ¥ % examples2.py
£ v M startingWithPyth .
v Mven . . " .
> MLib print("Please insert ur number:")

num = int(input())

if (1 <= num <= 50 or <= num <= 300) and num % 2 == 1:
print("valid number"
else:

print(" Lid nun

if (1 <= num <

ts\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmPro /startingWithPythonl/examples.py
t your numb

Invalid number

ss finished with exit code 8

Now notice that if you omit the parentheses, the result for the same number (42), will be wrong
(see the code below). This is because Python will not understand the logic of the comparison and
will evaluate 42 as valid just because it falls in the 1-50 range. It will only check if the number is
odd if it is in the 200-300 range. Parentheses are often necessary for logic to be executed correctly
and they generally improve the readability of more complex code (even if they are not necessary).

File Edit View Navigate Code Refactor Run Tools VCS Window Help
startingWithPython1 % examples.py

E.> © = T pexamplespy e examples2.py
v I startingWithPyth ().
v M venv : -
> Mo print("Please i
> I Scripts . .
ke num = int(input())
; nore
B pyvenv.cig
& conditional sta o =
2 example2 4 1f 1 <= num <= 50 or 200 <= num <= 300 and num % 2

% examples.py p rint("V D)

else:

P Scratches and Cor print("Inva

if 1 <= num <= 50 or 200 <= num...
examples
D:\Users\Gergana\PycharmProjects\startingWithPython1\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples.py
Please insert your number:

Valid number

Process finished with exit code @

You are now ready to test yourself in HackerRank. Solve the Python If-Else Challenge (make
sure you have enabled the “Easy” difficulty level).

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

3D Design for Education

.” MAKER SCHOOLS

Initialization and lifetime of variables in Python; global vs. local variables

Variables only exist if they have been initialized somewhere in the program. In Python variables
can be declared / initialized owutside a function ot inside a function. This determines if they have a
global or a local scope. The variables that are declared outside a function (in the main program)
are global variables and are accessible from anywhere in the program. You should make sure that
the variables are declared before they are used. If you try to use a variable that is declared later in
the program, you will get an error and the program will be terminated.

xamples2.py

t(name)

name =

rs\Gergana\PycharmProjects\startingWitnPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWitnPythonl/examples2.py

Process finished with exit code

Global variables can be changed within a particular function, but in order to do this, you need to
define them with the keyword global.

The variables that are declared within a function are local variables. They can be accessed and used
only within the function and they are erased from the memory (they cease to exist) after the
function is executed. This is valid also for variables that are defined within conditional
statements. In the example below, we cannot print name variable, because it will be defined only
if we execute the if statement, which we do not (because the condition is False); hence, the
variable name is never initialized. The IDE warns you about the possibility that your variable is
not initialized by marking it in orange.

% examples2.py
condition =

if condition ==
character_name =

yrint (character_name)

exampl

sers\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\pytho :/Users/Gergana/PycharmProjects/startingWithPythonl/e 1Les2.p!

s finished with exi

Loops in Python

In programs it is very often necessary to repeat the same code over and over again, with different
input. For example, we may have a list of names and we may need to go through all of them to

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
SO Erasmus+ Programme s ; ; ; ;
Ol o the European Union Commission cannot be beld responsible for any use which may be made of the information

contained therein.

3D Design for Education

ﬁ MAKER SCHOOLS

see if any of them is “Jon Snow”. Instead of writing the same code 5 or 5000 times, we will use a
loop. A loop forces the program to run code encapsulated in it as many times as we need.

Forloop

A forloop is the first major type of loop. It is constructed by using a range, which specifies how
many times the code should be re-run (iterated). An example is:

This code will print the numbers from 1 to 42 on a new line, without us needing to write print 42
times. Notice that the end of the range is excluded, so for the range 1-43, the last number that we
will print is 42. Try it yourself in PyCharm.

We can also specify a step for the iteration. If we want to only print every second number in the
1 - 42 range (i.e. only the odd numbers), we will add the szp of 2 when constructing the loop. We
add it after a coma following the range. See this code below.

File Edit View Navigate Code Refactor Run Tools VCS Window Help startingWithPython1 - examples2.py
startingWithPython1 | i examples2.py

examples.py % examplesZ.py *

for x in range(1, 42, 2):

> M Scripts
b gitignore
& pyvenv.cfg

print(x)

@ examples ¥ @ examples2

D:\Users\Gergana\PycharmProjects\startingWithPythoni\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

m [1

Process finished with exit code 8

If we are iterating backwards, we could add a negative step of -1 or any negative step. See such a
loop below, with a negative step of -2.

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the

jgll Erasmus+ Programme -
< G this Enigean Unioh Com”.ﬂmoﬂ ﬂl.ﬂﬂol‘ be held responsible for any use which may be made of the information
contained therein.

’ MAKER SCHOOLS

3D Design for Education

File Edit View Navigate Code Refactor Run Tools VCS Window Help startingWithPyth
startingWithPython1 | £ examples2.py

Er @ T T heamplespy % examples?.py
~ M startingWithPyth (

for x in range(42, 1, -2):
print(x)

_ H pyvenvct forx in range(42, 1, -2}
& examples @ examples2

D:\Users\Gergana\PycharmProjects\startingWitnhPython1l\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

42

40

38

38

34

32

30

28

26

24

22

20

18

m i & Yl

Process finished with exit code 0

More often than not, we will not know how many times we need to iterate. The number of
iterations will be given by a variable in our program or by the user. It is therefore possible to
define the range of the loop with a variable that will be changed or passed in by the program. In
the example below we print the numbers from 1 to the number that the user types on the
console. Notice that the upper limit of the range is the number of the user + 1, because the end
number is excluded.

Tip on conventional naming:

The typical letter that we use for iteration in a single loop is / rather than the » that we
used in our examples so far. However, the program will work with any letter or word that
you choose.

File Edit View Navigate Code Refactor Run JTools VCS Window Help sta on1 - exampl,
startingWithPython1 [examples2.py

B> @ = T {eamplespy o examples2.py
v I startingWithPyth (. 0 resuits
v M venv
> MELib print("Print the upper limit of the count:")
> I Scripts
i .gitignore
& pyvenv.cfg 3 for i in range(1, number + 1):
& conditional sta z =
& example2 print(i)
% examples.py
% examples2.py
% Hallo-world.py
> Il External Libraries

number = int(input())

P9 Scratches and Cor
foriin range(1, number + 1)

Run: ‘¢4 examples & examples2
D:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
Print the upper limit of the count:

m dh (18 Yl

Process finished with exit code ©

|

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the

> Erasmus+ Programme X
= G this Enigean Unioh Com;f.ﬂwm f@noz‘ be held responsible for any use which may be made of the information
contained therein.

ﬁ MAKER SCHOOLS

The best thing about for loops (and indeed, about any kind of loops) is that we can write very
complex code inside them. This allows us to perform very complex logic multiple times, but with
very little code to write.

Examples of using for loops

Let us let the user calculate their expenses by writing them one after the other. We will use a for
loop to sum all the expenses and we will provide the total cost. Do not forget to initialize the
variable representing the total cost outside of the loop in order to be able to print it later on.
Notice that we started the loop at 0, instead of 1 (this is more conventional), so the end of the
loop range will be n, and not n+1. Both range(1, n+1) and range(0, n) will have the same result.

File Edit igate C Refactor Run
startingWithPython1

¢ BHxr © = % examples.py o examples2.py

B

£ v M startingWithPyth (.

result 0 # We initialize - iable "re " a g it an initial
Inside the Lloop, will a) C e Lt to calculate the
et
for i in range(®, n):
current_cost = float(input())
result += current_cost

print(result)

foriin rangel0, n)

1 examples examples2

D:\Users\Gergana\PycharmPr s\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
How many things did you buy

Print the cost of each purchase and we will calculate how much you spent:

3.5

58

Process finished with exit code 8

Tip on delineating loop code from the other code:

The indentation tells Python if a command is inside or outside of the loop. In other
programming languages that you may be familiar with, the loop code is placed inside curly
brackets (e.g. in Java). But in Python, special attention has to be paid to indentation. In
the above example, print(result) is not indented, and therefore the print will be carried
out after the program exits the loop. If you indent it to the level of the commands inside
the loop (as in the example below), the program will print the result at each iteration.

The Eurgpean Commission's support for the production of this publication does not

Ko Co-funded by the
LS Erasmus+ Programme
ARH of the European Union

constitute an endorsement of the contents, which reflect the views only of the authors, and the
Commission cannot be beld responsible for any use which may be made of the information
contained therein.

MAKER SCHOOLS

3D Design for Education

File Edit View MNavigate Code Refactor Run Tools
startingWithPython1 | £ exar

e examples2.py

print("How many things
n = int(input())
print("Print the 0f ch purchase and w

result
B Scratches and for i in range(@, n):

current_cost = float(input())
result += current_cost

print(result)

examples
startingWithPythonl\venv\Scripts\python.exe D:/Use rgana/PycharmProj startingWithPythonl/examples2.py
How many things did you

Print the cost of each purchase and we will calculate how much you spent:

Process finished with exit code ©

Let us now write a program that allows the user to type as many numbers as they like and the
program will print the biggest and the smallest number. The program will accept both floating
numbers and whole numbers, as well as both positive and negative numbers. The specificity here
is how to initialize the variables that we need. We obviously need a variable for the biggest
number and a variable for the smallest number, and they have to be initialized before the loop
(outside of it). But how do we set the initial value of each? If you look at the code below, you will
notice that each number typed by the user is compared to the currently biggest number and the
currently smallest number, and if it is respectively bigger than the biggest number or smaller than
the smallest number, then the current number will itself become respectively the biggest number
or smallest number. Therefore, when we initialize the numbers, the biggest number should
initially be the smallest number possible; otherwise, the user-defined number may turn out to be
smaller than it and we will not replace this initial biggest value. Similarly, the smallest number
should initially be the biggest possible number. In this way, it will be impossible to omit any uset-
defined number that is smaller than the initial value. In Python, the biggest possible number in a
64-bit system is 9223372036854775807, while the smallest is -9223372036854775807. For 32-bit
systems the biggest number is 2147483647 and the smallest is -2147483647. These values are
given by the Python function sys.maxsize(). To use this function, we need to import the sys
library. See the whole code below.

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

’ MAKER SCHOOLS

3D Design for Education

P<| File Edit View Novigate Code Refactor Run Tools VCS Window Help
startingWithPython1 | % exam|
. B © = examples.py * | o examples2py
E v B startingWithPyth
v M venv :
> mLib import sys
> I Scripts
[ore v
e smallest_number = sys.maxsize
yvenv.
& conditional sta biggest_numbe -sys.maxsize
print(v many numbers c 0
n = int(input())
print e
> il External Librat i sl
T Scratches and Cor for i in range(®, n):
user_number = float(input())
if user_number < smallest_number:
smallest_number = user_number
ation of th

: y wi
if user_number > biggest_numb
biggest_number = user_number

print(f"You be {biggest_number}")
print(f"You r is: {smallest_number}")
foriin range(0, n) * if user_numbe:
& examples @ examples2
Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/6ergana/PycharmProjects/startingWithPythonl/examples2.py
How many numbers do you want to compare?

Type your numbers and we will tell you which one is the biggest and which one is the smallest

Your biggest number is: 566.0
Your smallest number is: -2000.0

Process finished with exit code ©

iZTODO O Problems % Debug B Terminal £ Python Packages % Python Console

While loop

The for loop requires us to specify the exact range for iteration. But what if we do not know the
range or we simply want to iterate as long as some condition is valid? For the latter purpose, we
use the while loop. The while loop specifies a condition that can be evaluated as True or False, and
it iterates as long as this condition is True. For example, let us ask the user to input a number
from 1 to 99, and then print all the numbers greater than the user’s number, until we reach 100.
You will notice in the code below that we repeat the print() function until the number equals 100
and, at each iteration, we increase the initial number with 1.

File Edit \ te e Run Tools
startingWithPython1
- o JaeE
startin
~
>m 1

number =)

Jwhile number <= 100:
‘ (number)

ts\startingWithPythonl\ Scri \): /Users/Gergana/PycharmP /startingWithPythonl/examples.py
number from 1 to 99:

100

Process finished with exit code @

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

3D Design for Education

ﬁ MAKER SCHOOLS

Let us now use a while loop to rewrite our previous program, where the user inputs their costs
and we calculate the total money spent. In the previous program, we asked the users to say how
many costs they will input and we used a for loop with a range set by the user’s answer. Now, we
will let the users input costs until they write “Stop”. Then we will calculate the total cost and will
print it on the console. Look at the code below. Read the comments about initialization of the
variables. Notice that we first read the user input outside the loop to know if we need to enter
the loop at all. Then inside the loop we re-read it at each iteration in order to check if the loop
condition is still valid for the next iteration. Each time when we re-read the input, the variable
command is assigned the new input as its value. You should also notice that we first read the
input as string, and we cast it to float only after we enter the loop. This is because if we cast it
immediately, as soon as the user writes “stop”, the program will be unable to cast it and will crash
with an error. We check if the command is “Stop” or “stop” or “STOP”. We do this by
comparing the two strings - the command string and “Stop” - in case-insensitive manner. We use
the 77y _stringlower() command to transform the command in small letters only. Thus, even
though the input in our example was “STOP” instead of “stop”, the program was executed
correctly.

® command = inpt

print(

A variation of the while loop is the while True loop. This loop will run indefinitely until there is a
command that breaks from it - the break command. We can call this command in a conditional
statement, so that the loop can break when a certain condition is True. However, the same can be
easily achieved with inserting the condition in the while loop itself, so using the while True loop is
not usually a recommended practice (it can make the code more difficult to change). There are
some use cases of the while True loop, though, like in the case of a network listener, where we do
need an infinite loop and so using the while True loop is justified. In any case, you can see below
the above example implemented with a while True loop.

The Eurgpean Commission's support for the production of this publication does not
Ratl Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

ﬁ MAKER SCHOOLS

print("P1
total = @

print(

cripts\python.exe D:/

You are now ready to test yourself in HackerRank. Solve the Logps Challenge. It is available in the
“Easy” difficulty mode. Try also the Print Function Challenge, which will test your knowledge of
both printing on the console and for loops.

Nested loops

For more complex algorithms, it is necessary to loop over several data sets simultaneously. To do
this, you need nested loops. The iteration starts from the outer loop. Once the first value of the
outer loop is loaded, the program iterates over all the values in the inner loop. Following this, the
second value of the outer loop is loaded, and the program again iterates over all the values in the
inner loop. This is repeated until all the values in the outer loop are iterated over.

To understand nested loops, it is best to try an example. Let us print the minutes and hours of a
day using nested loops. We know how many hours there are and how many minutes there are per
hour, so we can use nested for loops. As you know, you need 60 minutes to pass before the hour
changes. Thus, the outer loop is the hours and the inner loop is the minutes.

.format(m))

What does this program do? It enters the outer loop and takes the first value in the 0-24 range,
which is O (this is the hour). Once this value is loaded, the program enters the inner loop and
starts iterating over all the values in the inner loop (the minutes). It will load all the values,

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the

falll Erasmus+ Programme

B o ttis: Eurstiean Utsion Commission cannot be beld responsible for any use which may be made of the information

contained therein.

3D Design for Education

.” MAKER SCHOOLS

starting from 0 and ending with 59 (the end index - the ceiling of the range - is not included, you
remember). When printing, we have added a leading zero to be printed whenever the number is
between 0 and 9. So, instead of 1, we will print 01. At each iteration of the inner loop, the
program will print the hours and the minutes: 00:00, 00:01, 00:02...... 00:59. Once the program
reaches 60 in the inner loop, it will exit the inner loop, enter the outer loop and load the second
value in the outer loop, namely 1. Then it will iterate again over all the values in the inner loop
(from 0 to 59) and will print: 01:00, 01:01, 01:02....01:59. Then it will again exit the inner loop,
enter the outer loop and load the third value in the outer loop, namely 2. This will be repeated
until the last iteration of the outer loop, namely 23. Once 23 is loaded, the program will iterate
over 0-60 in the inner loop and will print: 23:00, 23:01, 23:02....23:59. The last printed value will
be 23 hours and 59 minutes. Write the program to check the results yourself in PyCharm.

Tip on writing code more efficiently:

Notice that we did need not need to write range(0, 24). We wrote only range(24), because
it is equivalent when the starting value is 0.

Tip on formatting:

A leading zero is printed by "{:02d}".format(my-nunber). This function adds a zero if the
number contains only one digit. If you write " {:03d}".format(zzy-number), you will get 1 or
2 leading zeroes, so that the printed number will always have 3 digits.

Working with text

Basic functions

In programs we often need to work with strings (text). Python provides a lot of commands and
functions to allow us to use and manipulate strings as we wish.

The len(ex/) function will return the length of a string (be it a word or a long text). Try it yourself
in PyCharm.

The function 57779 variable|7| will return the character on the i-th index of the string variable. The
index indicates the position of a character in the string. For example:

character name =

print(character_name[0])

This will return “J”. Indices are always integers. The first index of every string is always 0, so the
last index is the /ength of the string — 1. Confusing the indices will lead to an “index out of range”
error.

character_name =
print(character_name[len(character_name)])

examples2

sers\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

Process finished with exit code 1

The Eurgpean Commission's support for the production of this publication does not
REN Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
A Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information

* of the European Union . .
contained therein.

3D Design for Education

.” MAKER SCHOOLS

The above example ended in an error. We tried to get the last index using the length of the string.
This is intuitive but wrong, because we started from 0 and not from 1. So, if you want to take
the last character of the string, you should use:

character name =

print(character_name[len(character_name) - 1])

You can use a for loop to iterate over all the characters in a string. For example, with the code
below we write each character of “Jon Snow” on a new line. Notice that since the range of the
loop does not include the last index, we do not subtract 1 from the length, as we did above. We
iterate exactly to the length of the string, because we know that the loop will terminate before the
last index — len(character_name) (which is out of range).

character_name =

11in range(0, len(character_name)):
print(character_nameli])

We can also do the same for any text input by the user on the console:

[] File Edi g factor Run Too
startingWithPython1 ' 2

amples2.py

ange(8, len(text)):
print(text[i])

D:\Users ana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
Write your text:

T
h
w

Process finished with exit code ©

In Python, strings are immutable and cannot be changed. You can print a specific character but
you cannot change it. In the example below, we can print the first letter of the text, but when we
try to change it, we get an error.

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
SO Erasmus+ Programme s ; ; ; ;
Ol o the European Union Commission cannot be beld responsible for any use which may be made of the information

contained therein.

’ MAKER SCHOOLS

3D Design for Education

startingWithPython1
Har @ eem)
~ Mstartn | character_name =
int(character_name[0])
character_name[8] =

startingWithPythonl\ve pts\python.exe D:/Users/Gergana/PycharmProj /startingWithPythonl/examples2.py

Process finished with exit code 1

More about formatting strings

We already learned in the previous sections that when we need to convert another datatype to
string, we use the str() function, and we place the variable that we need to convert inside the
round brackets of the function (we pass it in as an argument). We can use this function to
convert into string any built-in datatype in Python, including floating numbers, lists, tuples,
dictionaries, etc. We will learn more about some of these datatypes later on, and then you will be
able to try out the function. Below we show again a simple example of converting an integer.

startingWithPython1 | &
Er @ e examples2.py
startin 234

converted_a = str(a)

yrint(type(converted_a))

\startingWithPythonl\ven ipts\python.exe D:/ ergana/PycharmProjects/startingWithPythonl/examples2.py

Navigat

startingWithPython1 | &
Er & fhe examples2.py
startin _
.8l intro =
> | 7 yrint(intro * 5)
o

gana/PycharmPr ts/startingWithPythonl/exampl

Process finished with exit code 8

Now let us return to working with text that includes the values of certain variables (i.e. this value
is not known in advance, but is provided as the program executes). We deal with this through
string formatting. We already learned about string formatting using the *forarted string” method.

There are other methods that you may see and use. You can format with the % operator,

followed by the suffix s for string, the suffix d for integer and the suffix f for float. The

The Eurgpean Commission's support for the production of this publication does not
REN Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
A Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information

* of the European Union . .
contained therein.

3D Design for Education

.” MAKER SCHOOLS

combination % and suffix serves as a placeholder for the variable, which is then provided after
the string, using the syntax % vawable. If more placeholders are used, we use %o (variable 1,
variable_2). Look at the examples below. The f suffix allows for additional formatting. If we add
.2 or .3 before it, we will specify how many decimal places will be shown after the decimal point
for a floating number. We can specify any number of decimal places. If we do not specify the
decimal places, by default Python will extend floating numbers to 6 decimal places after the
decimal point.

File Ec

startingWithPython1 5

Er QO i examples2.py

starti -
e 1 name =
age = 14
my_floating_num = 3.14

ATk % (name, age))

ATk % my_floating_num)

T % my_floating_num)

:/Users/Gergana/PycharmPro /startingWithPythonl/examples2.py

Another way to format a string is the {} operators, followed by .format(variable 1, variable_2).
This is similar to the f-string formatting we saw earlier in this Compendium. The {| operators are
used as a placeholder for the variable, but instead of including the variable’s name between the
curly brackets, we leave the brackets empty and pass the variable in the .format() function as an
argument. If several variables are provided as arguments, they need to be separated by comas.
When the program is executed, the placeholders will be replaced by the actual values of the
variables in the order in which the variables were passed. The floating number can be further
formatter with the .xf notation, preceded by a colon, with x indicating the number of decimal
places that should be shown after the decimal point. Look at the code below, which is identical to
the previous example, even though we used this alternative method.
e
e O e —
R 1 name =
age = 14
my_floating_num = 3.14
rint(.format(name, age))
rint(.format(my_floating_num))

.format(my_floating_num))

/Gergana/PycharmProjects/startingWithPythonl/examples2.py

The numb L a mathemati

Process finished with exit code 8

Lists

In Python a list is a datatype - a collection of values that are ordered (index supported) and changeable
(mutable). The items in the list are separated with comas and the list is written inside square
brackets [|.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

3D Design for Education

." MAKER SCHOOLS

An empty list is created with empty square brackets || or with the list() function. A list with pre-
defined elements is created by placing these elements inside square brackets, separated by comas.
Elements can be duplicates (they do not have to be unique).

empty_list =]

numbers = [42, 3.14, 1, 9]

The elements/members of a list can be of any datatype, including other lists. In the latter case,
they are called nested lists.

nested_numbers = [42, 3.14, 1, 9, [3.14, 0]]
Tip:

A useful approach is to sp/iz a text (string) and to directly create a list out of the resulting
pieces. This would allow us to read text typed on the console or provided by the user and
to store it inside a list, as in the example below. Splitting is achieved with the
ser teclsplic(“delimirer”) function. You need to choose the delimiter, which helps Python
recognize where one word ends and the other one starts. Any character or group of
characters can be a delimiter.
E N
startingWithPython1 | i
Er @ heamp xamples2.py
1t (
user_list = input()
character_list = user_list.split(
rint(character_list)

examples
D:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
Write your preferred character names, separated by coma and an empty space:

['Jon Snow', 'Arya Stark', 'Robert Baratheon', 'Tyrion Lannister', 'Cersei Lannister']

Process finished with exit code @

Conversely, we can create a text out of an existing list of strings. This is done with the
“elimiter”join(list_name) command. We cannot join elements of other datatypes unless we have
converted them into strings beforehand.

startingWithPython1
Er © i eamplespy % examples2.py
character_list =
text = .join(character_list)
yrint (text)

ples o
sers\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
Jon Snow, Arya Stark, Robert Baratheon, Tyrion Lannister, Cersei Lannister

Process finished with exit code 8

Since lists are numbered, we can use indices to access a list member. Remember that indices start
from 0, not from 1. Look again at this list

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the

SO Erasmus+ Programme

I ot the Euipsen Uriion Commission cannot be beld responsible for any use which may be made of the information

contained therein.

.” MAKER SCHOOLS

The element on index 1 of the above list is 3.14, and not 42. 42 is on index 0. Similarly, the last
index is equal to the number of elements — 1. Trying to access an index that is out of range is a
common mistake in programming and would cause the program to terminate with an error. If
we have nested a list inside another list, we may access the nested list’s elements with nested
indexing (the nested list’s index in the main list comes first, and the element’s index in the nested
list comes second). For example, to access 0 in the above example, we need to write:

print(nested_numbers[4][1]) # The list [3.14, 0] is the 5th element in the nested_numbers list,

and is acc : ; 0 is the second nent in the nested list and is ac | with [1]

Like with strings, it is possible to use negative indices. The -1 index accesses the last item, and the
—|length of lisA] index accesses the first element of the list. See the example below.

startingWithPython1 = i
Er O e oy Py
“:';_tmi:l numbers = [42, 3.14, 1, 9]
) yrint(numbers[-1])

yrint(numbers[-4])

es exam

D:\Users\Gergana\PycharmProjects\startingWithPythonl\ Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

ss finished with exit

We can use slicing in lists in order to return the elements in a range from a start index to an end
index. We do this by specifying the range of indices that we need. The start index in the range is
accessed, but the end index is not accessed (the start index is inclusive, but the end index is
exclusive).

The command /s7_nane|1:3] will access and print the elements on the first and second index, but
not the third one. If we do not specify a start index but instead start from : (colon), followed by
the end index, we will access all elements from the beginning to the exd index - 1. If we do not
specify an end index, and start from a start index, followed by : (colon) only, we will access all
elements starting from the start index till the end of the list. If we use [::] or [0:] we access all the
elements. See the examples below.
[E9 Eile Edit Vi
startingWiehPython' | 7

y i examples2 py

numbers = [42, 3.14, 1, 9]

rint(numbers[1:3])

yrint(numbers[:3])

yrint(numbers[1:])

rmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

Process finished with exit code ©

We can add, remove and change elements in the list by accessing their index. New values are

assigned using the = operator. A new element is added with the nawe_of /ist.append (element)
method. The new eclement is always added at the tail of the list. We can use the

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
SO Erasmus+ Programme s ; ; ; ;
Ol o the European Union Commission cannot be beld responsible for any use which may be made of the information

contained therein.

3D Design for Education

.” MAKER SCHOOLS

name_of _list.extend (element 1, element 2) method to add more than one element, again at the tail of
the list.

amples2.py

character_names = [

Changing an element
character_names[4] =
rint(character_names)

Changing several elements in a range

character_names[2:4] = ['

rint(character_names)

Adding an element
character_names.append(
yrint(character_names)

Adding more than one element
character_names.extend([
yrint(character_names)

/users/Gergana/Pycharmpi

er']

'Tywin Lannisti ime Lyman Lannister']
, 'Arya stark’', stark®, 'Tywin Lannist Lyman Lannister', 'Daenerys Targaryen', 'Viserys Targaryen']

Process finished with exit c

If we need to add an element at a particular index, we need to use instead the
name_of_listinsert(index, element) method. We pass in as arguments the index on which we need to
insert the new element and the new element itself. If we need to insert more than one element in
a particular location, then we assign the new elements (grouped into a list) on the [index:index|
position. Be careful not assign them on the [index| position, because you will overwrite the
existing value with the new list.

3 e e i —

Er O e e examples2.py

2l character_names = [

Inserting an element in a particular location
character_names.insert(2,)
rint(character_names)

Inserting more than one element in a particular Llocation
character_names[2:2] = [.

yrint(character_names)

Inserting more than one element in a particular location but overwriting the existing element

character_names[4] = [1

rint(character_names)

Stark',
, "Arya Stark', ' en', 'V R en', 'Vise obe eon’, , 'Cersei Lannister']

Process finished with exi

It is also possible to swap the positions (indices) of the elements. This is done by simply assigning
the elements to different indexes, as shown in the example below.

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
SO Erasmus+ Programme s ; ; ; ;
Ol o the European Union Commission cannot be beld responsible for any use which may be made of the information

contained therein.

’ MAKER SCHOOLS

3D Design for Education

y P examples2.py
H‘Jchar‘acter_names =10

yrint(character_names)

character_names[8], character_names[1], character_names[2] = character_names[2], character_names[@], character_names[1]
rint(character_names)

/startingWithPythonl/examples2.py

Deleting an element is done by accessing the element’s index and the del keyword. We can delete
one or more elements by indicating an index or a range of indices. We can also delete the list
itself. Examples are shown below.

se [::] to indice on_from the fi

ven though it has

Apart from the del keyword, we can use the /is/_nameremove(element) method by passing in it as
an argument the element that we need to remove. The /57 _name.pop(index) method works in the
same way but we have to pass in as an argument the index of the element that we want to
remove. This method also returns the element that is being removed, so we can use it in the
program. If we do not pass in the index as an argument, pop() will remove the last element,
which could be useful if we need to use the list as a szack. We can delete all the elements in the list
by using the /is/_name.clear() method.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

* Erasmus+ Programme

3D Design for Education

factor Run Too
startingWithPython1 =

> © & examples2.py

v et character_names = [

Deleting an element with remove()
character_names.remove(
yrint(character_names)

Deleting and returning an element with pop()
deleted_name = character_names.pop(1)
rint(deleted_name)
orint(character_names)

Deleting and returning the last element with pop()
deleted_name = character_names.pop()
orint(deleted_name)
orint(character_names)

Deleting all elements in the list with clear()
character_names.clear()
yrint(character_names) # We will get an empty list

Users\Gergana\PycharmP \startingWithPythonl\v ripts\python.exe D:/Users/Gergana/PycharmPro s/startingWithPythenl/examples2.py
Snow', 'Arya Stark', 'Tyrion Lannister', 'Cersei Lannister']

snow', 'Tyrion Lannister', 'Cersei Lannister']
sei Lannister
*Jon Snow', 'Tyrion Lannister']

(1

Process finished with exit code 8

Two lists can be combined (concatenated) with the + operator. A list can be repeated several
times using the * operator, followed by the number of repetitions. The result is a new list.

startingWithPython1 '
Er @ & 5 examples2.py
v M startin 4
character_names_1
= v Even - -
> 2 character_names_2

Concatenating two lists
all_character_names = character_names_1 + character_names_2
yrint(all_character_names)

Repeating a list
repeated_character_names = character_names_2 * 3

yrint(repeated_character_names)

ts\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergan harmProjects/startingWithPythonl/examples2.py
, 'Arya Stark', bert Baratheon', 'Ty Lannister', 'Cersei Lannister’ , 'Daenerys Targaryen' serys Targaryen']
, 'Daenerys Targaryen', 'Viserys Targaryen', 'Jon Snow', 'Daenerys Targaryen', 'Viserys Targaryen', 'Jon Snow', 'Daenerys Targaryen', 'Viserys Targaryen']

Process finished with exit code 0

With the /ist_nameindex(element) method we can get the index of an element that we know exists
in the list. However, if the element is present in the list several times, we will only get the index of
the first occurrence of this element. On the other hand, we can use the /isz_name.count(element)
method to return the number of times a specified element appears in the list. In the latter case,
the element is passed in as an argument.

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
Commission cannot be beld responsible for any use which may be made of the information

of the European Union . .
contained therein.

’ MAKER SCHOOLS

’ MAKER SCHOOLS

3D Design for Education

Jcharacter_names = [

yrint(character_names.index(
wint(character_names.count(

s\startingWithPythc Scrip Dy the :/Users/Gergana/Pycharm ts/startingWithPythonl/examples2.py

Process finished with exit code @

Other useful in-built methods that can help us work with lists are for example len(/isz nanme)
(returns the number of elements in a list), /s namesorted() (sorts the list automatically and
returns the result as a new list; does not modify the original list), /s/ namesort() (sorts the
elements in the list automatically or according to a parameter we pass in as an argument, and
overwrites the initial list), /s/ namereverse() (reverses the order of the elements in the list and
overwrites the initial list) and /is7_name.copy() (returns a new list that is a copy of the original; does
not modify the original list). See some examples below. Try these methods yourself in the IDE.

% examp

haracter_names = [

len()
yrint(len(character_names))

sorted() - will automatically sort alphabetically but will not overwrite the original list
sorted_character_names = sorted(character_names)

i=((o ="

t(character_names)

i=((0 ="")

t(sorted_character_names)

> il

sort() - we sort descending the previous list that we created with sorted()
sorted_character_names.sort(=True)
rint(sorted_character_names)

reverse() - we reverse the original list and will ove
character_names.reverse()
yrint(character_names)

copy()
duplicate_character_list = character_names.copy()

yrint(duplicate_character_list)

s\startingWithPythonl i))y /ce /Pyc fexamples2.py

It is often useful to check if an element is present in the list. This is done using the keyword in or
the keywords not in. The program returns a Boolean — True or False.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

’ MAKER SCHOOLS

3D Design for Education

% examples2.py
ﬁcharacter_names = I

in character_names)
in character_names)
not in character_names)

e les2
s\Gergana\PycharmpPri s\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

finished with exit code @

Let us now learn how to loop through lists. We can use a for loop to iterate over the elements as
shown in the first example below. The word “name’ is a generic name for the variable that holds
the value of the current element at each iteration. This variable is assigned a new value during
each iteration as we go over the whole list. You can name this variable as appropriate, depending
on what is included in your list (e.g. number, temperature, etc.).

We can also iterate through the indices by defining a range. An additional advantage here is that
we can specify a step for the iteration. For example, if we choose a step=2, the loop will skip one
index when going to the next iteration and will only go through every second index. The syntax
here is for mndex in range(start index, end index, step). If we only pass in one argument, this
argument will be regarded as the end index and the loop will iterate from the beginning of the list
to that index - 1. Remember that the end index is not included in the loop. If we only pass in two
arguments, they will be regarded as start index and end index.

startingWithPython1 |

EHr O @&

Looping through a list by iterating over the elements
name in character_names:
yrint(name, =)
1t()
Looping through a list by iterating over the indices, usuing a range (with a step=1 and with a step=2)
With a step=2, the loop will go though each second element only and 11 one index)
» index in range(len(character_names)):
yrint(character_names[index], =)
int()
index in range(®8, len(character_names), 2):
yrint(character_names[index], =)

rgana/PycharmProjects/startingWithPythonl/examples2.py
Lannis

i Lannister,

Lannister,
nished with exit

As an alternative, we can use a while loop to iterate over a list. However, this would require that
we use the pop() function to remove each element that we have already looped over. In the while
loop, we can thus iterate as long as the list is not empty. When we iterate over the last element,
we will remove it with pop() and the list will remain empty, which would end the loop. To check
if the list is not empty, we use the len() function.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

= [

while len(character_names) > 0:

yrint(character_names.pop(0))

\startingWithPythonl\venv

Arya Stark
t Baratheon
Tyrion Lannister
Snow
i Lannister

ss finished with exit

Tuples

Scripts\pytho

’ MAKER SCHOOLS

3D Design for Education

We remove and return the first element at each iteration

rgana/Pycharmp ts/startingWithPythc xamples2.py

In Python a tuple is a datatype - a collection of values that are ordered and unchangeable (immutable).
It is very similar to a list, with the only difference being that the items are immutable once they
have been placed inside the tuple. We also cannot add or remove elements from it. The items in
the tuple are separated with comas and the tuple is written inside round brackets (). Duplicate
members are allowed. Sometimes you can see tuples created without any brackets but this
method is not recommended to use. The items inside a tuple can be of any datatype (e.g. integers,
floats, strings and even collections such as other tuples or lists) and we can also create a tuple
with different datatypes in it. It is possible to carry out tuple unpacking, by assigning the values
that are contained within the tuple to variables. See an example of tuple unpacking.

startingWithPyth
EER I

~ [startin 1

% examples2.py
14,
cking

my_tuple =
tuple unp
character_age, character_name =
print(character_age)
print(character_name)

cts\startingWithPythonl\ven

Jon Snow

finished with exit

my_tuple

cripts\pytho /6ergana/Pycharmpr /startingWithPythol

To initialize an empty tuple, we assign () to it. To initialize a tuple with one element, it is not
enough to put that element in round brackets because Python will regard it datatype to be that of
the element itself. We need to add a coma after that single element to indicate that we have a

one-element tuple.

The Eurgpean Commission's support for the production of this publication does not

R, Co-funded by the
SO Erasmus+ Programme
ARH of the European Union

constitute an endorsement of the contents, which reflect the views only of the authors, and the
Commission cannot be beld responsible for any use which may be made of the information
contained therein.

’ MAKER SCHOOLS

3D Design for Education

Er © o eamplesp e examples2.py
~ M startin | empty_tuple = ()
print(empty_tuple)

single_el_tuplel = (
print(type(single_el_tuplel)) # This will be considered a string, not a tuple

single_el_tuple2 = ()
print(type(single_el_tuple2)) # This will be co

:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
(9]
<class 'str's>
<class 'tuple's>

Process finished with exit code 8

Tuple elements are ordered and have indices associated with them. Therefore, each element can
be accessed by its index. Just like in strings and lists, indices start from 0, and the last index is the
tuple_length — 1. Calling an index that is equal to the length of the tuple will result in “Index out of
range error”. Negative indexing is allowed: the last index is -1 and the first index is -(length of the
tuple), i.e., for my_tuple with 6 elements, the first index can be called with my_tuple[-6] and the
last index with my_tuple[-1]. More than one element can be accessed with s/iczng, whereby inside
the square brackets we place the range of the slice, e.g. if we need from index 1 to index 5 we
write [1:6]. Like in strings and lists, the start index is accessed, but end index is not, so in our case
the last accessed index will be 5. If we only indicate inside the square brackets one index,
followed by a colon, e.g. [2:], then we will access all indices from the indicated index (including it)
until the end of the tuple. Similarly, if we indicate one index preceded by a colon, we will access
all indices from the beginning of the tuple until the indicated index (excluding this index). See all
of this demonstrated in the example.

startingWithPyth
Hry O Bhea o examples2.py
~ Mstartin | character_names = (
print(character_names[0])
print(character_names[3])

#Negative in ing
yrint(character_names[-4])
yrint(character_names[-1])

Ac ng elements with slicing
yrint(character_names[0:2])
yrint(character_names[:2])
yrint(character_names[2:])

examples exa

D:\Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

ya Stark
Jon Snow
Arya Stark
ion Lannister')
Lannister*)

Process finished with exit code 8

The Eurgpean Commission's support for the production of this publication does not
Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the

bSG Erasmus+ Programme oo ; ; ; ;
I ot the Euipsen Uriion Com;f.zzwon cannot be held responsible for any use which may be made of the information
contained therein.

.” MAKER SCHOOLS

Unlike the elements of a list, the elements of a tuple cannot be changed. The only exception to
this rule is when the element is a mutable collection, such as a list. To do this, we access it with
two square brackets [|[| containing respectively the index of the mutable collection (e.g. a list) and
the index of the element in that mutable collection that we want to change. We then assign this
element a new value.

We can change the tuple itself if we assign it different values. Look at the examples below and try
it yourself in PyCharm.

Edit
startingWithPython1 ' &
E> € iBeample

v M startin 4 character_names = (

Changing a tu

character_names = (

print(character_names)

Changing a mutable collection which is an element of a tuple
(3.14, 42, [0, 1])

print(numbers_tuple)

numbers_tuple[2][1] =

print(numbers_tuple)

numbers_tuple =

D:\Users\Gergana\PycharnProjects\startingWithPythonl
('Tywin Lannister', 'Eddard Stark', 'Arya Stark')
(3.14, 42, [0, 1D

(3.14, 42, [8, 8])

\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples.py

PP s finished with ex

can combine multiple tuples together with the + operator, and the action is called
concatenation. 1f the concatenated tuples contain some identical elements, these elements will be
duplicated. We can also replicate all elements of a tuple using the * operator followed by a
number indicating how many times the elements will be repeated. Both of these operations create
a new tuple. See the examples below.

File Edit
startingWithPython1 | %

EH.r @ @Heam
~ M startin 1

catenation of tuples
| R

character_namesl = (
character_names2 = (. .
character_names = character_namesl + character_names2

print(character_names)

repeating tuple elements
(42, 3.14)
new_numbers_tuple =

> 1l Extern:
%

numbers_tuple =
numbers_tuple * 5

print(new_numbers_tuple)

s\python.
Tywin Lannisti

/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
'Eddard Stark', 'Arya Stark')

startingWithPythonl\ve

Robb Stark', 'Arya Star
, 3.14)

Process finished with exit cc

cannot delete or add elements in the tuple. We can only delete the whole tuple with the del
ny_tuple command. Try it yourself in PyCharm.

The Eurgpean Commission's support for the production of this publication does not
constitute an endorsement of the contents, which reflect the views only of the authors, and the

R, Co-funded by the
SO Erasmus+ Programme
ARH of the European Union

Commission cannot be beld responsible for any use which may be made of the information
contained therein.

3D Design for Education

." MAKER SCHOOLS

There are several methods available in Python that help us work with tuples. The first one is the
count(e/enzent) method. We pass in it as an argument an element of the tuple and the method
returns the number of times the specified element appears in the tuple. The index(e/ezzen/) method
takes as an argument an element of the tuple and returns the index of the first appearance of this
element. There is a method to also check if an element is found in the tuple or not. The method
returns True or False. The syntax is 7z)_e/ement in nry_tuple or nry_element not in z2y_tuple. Essentially
these methods are identical to those used in lists. See the examples below and try them yourself.

startingWithPython1 | &
Er @ Be % examples2.py
¥ s character_names = (
v Mven

count() method

print(character_names.count(

_index() method
print(character_names.index(# a s returns the inc st appe nce of the element

print(character_names.index()) # always returns the ind of the first appearance of the element

® 4 Checking if an element is in the tuple
print(in character_names)
print(in character_names)

sers\Gergana\PycharmProjects\startingWithPython1\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

True
False

Process finished with exit code 8

Lastly, let us learn how to iterate over a tuple. This is also the same as for lists. Remember that
the syntax for a for loop is: for keyword, followed by a name for the variable representing each
current element, followed by the in keyword and followed by the name of the tuple variable (or
the tuple itself written in round brackets). Now, inside the for loop, we can write code using the
current element retrieved during the current iteration. See the example.

igat actor Run
startingWithPythonl = % o
Er © i % examples2.py
= e R character_names = (
v m
for name in character_names:

print(name)

D:\Users\Gergana\PycharmProjects\startingWithPython1\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
Jon Snow

Tyrion Lannister

Robb Stark

Arya Stark

Robb Stark

Robb Stark

Process finished with exit code 0

Tip on why we could choose to use a tuple:

Tuples contain immutable elements and can be used to provide the keys for a dictionary.
Lists cannot be used like this.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

ﬁ MAKER SCHOOLS

In Python a set is a datatype - a collection of items that are #nordered and immutable. However, the
set itself is mutable, so we can add or remove items from it. Since the items are unordered, we
cannot use the index of an item to retrieve it. The items in the set are separated with comas and
the tuple is written inside cutly brackets {}. The items inside a set can be of any datatype (e.g.
integers, strings) and it is possible to also create a set with different datatypes in it. The elements
in a set are unique and if we try to add duplicates, they will be disregarded.

Sets

If we need to initialize an empty set, we cannot do it by assigning empty curly brackets because
this will create an empty dictionary. We can create an empty set with the set() function without
passing any argument in it.

startingWithPython1 | g

~ M startin character_names = (@]

-
((character_names))

Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

Process finished with exit code 8

We can add items to the set by using the add(e/zzen/) method and passing in it the new item as an
argument. If we need to add multiple items to the set, we use the update(|e/ement 1, element 2|)
method and add these items as arguments, separated with comas and enclosed in square brackets.
In the examples below, you will notice that the printed set has a different order than the order in
which we added the elements. In fact, each new execution of the print() command will print the
items in a different order.

We can remove elements from the set with the discard(e/ement) and remove(elenzent) methods.
Both methods will remove from the set the element that we pass in as an argument. However, if
the item we are trying to remove does not exist in the set, discard() will do nothing while
remove() will generate an error to warn about attempting to remove an element that does not
exist. The choice between the two options will depend on whether or not we want the program
to crash and indicate an error, or to just try to remove the element and continue without
interruption if the removal was unsuccessful. The pop() method removes an element from the set
and returns it to the program, but it does so with a random element, because the set is unordered.
Notice that the pop() method returns the value that it deletes, so you can use this value in your
program. The examples below illustrate all the functions.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

’ MAKER SCHOOLS

3D Design for Education

@ examp

~ M startin
= v

> m print(character_names)

> D # add() function

character_names = {

character_names.add(
print(character_names)

update() function
character_names.update([
print(character_names)

remove() function with existing element
character_names.remove()
print(character_names)

update() function with non ting element
character_names.discard()
print(character_names)

pop() function with saving he removed value into a variable
removed_name = character_names.pop()
print(removed_name)

#remove() function
character_names.remove()
print(character_names)

Gergana\PycharmPro s\startingWithPythonl\ven pts\pytho : /Users/Gergana/PycharmP ts/startingWithPythonl/examples2.py

'Tyrion Lanni
'Tyrion Lanniste

Jaime Lannister

We can also remove all the items from a set using the clear() method. A copy of the set can be
created with the copy() method.

If we have multiple sets we can manipulate them through mathematical operations - wuion,
intersection, difference and symmetric difference.

A union of two sets creates a new set containing all elements from both sets. However, duplicates
will be removed. Urion is performed by using the | operator or the union() method.

An zntersection of two sets creates a new set containing only the elements that are common in the
two initial sets. Intersection is performed by using the & operator or the intersection() method.

A difference of two sets creates a new set containing only the elements that are in the first set but
are not present in the second set. Difference is performed by using the — operator or the
difference() method. Unlike in the other two operations, here we need to be careful which set we
are subtracting from and which one is subtracted — e.g. Set 1 — Set 2 will be very different from
Set 2 — Set 1.

A symmetric difference of two sets creates a new set containing only the elements that are in the first
or the second set, but not in both of them (i.e. common elements will be excluded from the new
set, so this is the opposite of intersection). Symmetric difference is performed by using the © operator
or the symmetric_difference() method.

The same methods can be used with _update() added to them — intersection update(),
difference_update(), symmetric_difference_update (), union_update() — in which case the first set
will be replaced by the respective result from the operation.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

’ MAKER SCHOOLS

3D Design for Education

Bellow we show the wnion, intersection, difference and symmetric difference methods, as well as the copy()
and clear() methods. You can test all the rest yourself.

xamples?.py
character_names
new_character_names

union_set
print(union_set)

intersection_set
print(intersection_set)

symmetric_difference_set

character_names.union(new_character_names)
Notice how duplicates are omitted

character_names.intersection(new_character_names)

= character_names.symmetric_difference(new_character_names)

print(symmetric_difference_set)

difference_set

print(difference_set)

set_to_clear
set_to_clear.clear()

print(set_to_clear)

‘Tyrion Lannis
et()

Process finished with exit code @

Dictionaries

character_names.difference(new_character_names)

union_set.copy()

/startingWithPython: mples2.py

In Python a dictionary is a datatype - a collection of values that are ordered (as of Python 3.7) and
changeable (mutable). It consists of pairs of a key and a value associated with it (key: value). The key-
value pairs in the dictionary are separated with comas and the dictionary is written inside cutly
brackets {}. We can also create a dictionary with the dict() function, in which we pass as an
argument a sequence of pairs. See the examples below.

R, Co-funded by the
SO Erasmus+ Programme
ARH of the European Union

The Eurgpean Commission's support for the production of this publication does not
constitute an endorsement of the contents, which reflect the views only of the authors, and the
Commission cannot be beld responsible for any use which may be made of the information
contained therein.

’ MAKER SCHOOLS

3D Design for Education

startingWithPython1 ' i

Hr @ fe examples2.py
Creating an empty dictionary
characters = {}
yrint(characters)

Creating a dictionary with values
character = { 3 s
yrint(character)

)MHFT? 7 # Creating a dictionary with keys of mixed datatypes
character = {1: s g s
yrint(character)

Creating a dictionary with the dict() function
character_1 = dict([(; g L
yrint(character_1)

s\startingWithPythonl\venv\Scripts\pytho): /Users/Gergana/PycharmP ts/startingWithPythonl/examples2.py

Process finished with exit ¢

A key must be a datatype that is immutable (a string, a number or a tuple with immutable
elements). The different keys in the same dictionary, however, can be of different datatypes. They
must be unique; if we add to the dictionary a pair with a key that is identical to an already existing
key, the existing key-value pair will be overwritten /updated (the value associated with the
original key will be replaced with the newly provided value for this key. The values in the key-
value pairs can be of any datatype and can be duplicates.

In dictionaries, we do not use indices to access elements; we use the keys. We can add new
elements in a dictionary, or change the value of existing elements. The syntax for adding and for
updating is essentially the same — nazze_of dictionary|key| = valne. Y ou notice that instead of placing
the index inside the square brackets, we place the key there. See the examples below.

% examples?.py

characters_and_houses = {

yrint(characters_and_houses)
Adding an element
characters_and_houses|
yrint(characters_and_houses)
Updating an element
characters_and_houses|

¢ int(characters_and_houses)

ts\startingWithPythonl\venv
Stark': 'Stark’
. tark’
‘Targaryen®, 'Arya Stark': 'St

finished with e

We can also remove items from the dictionary. There are different methods to achieve this -
pop(), popitem() and del. Which method we use depends on what we want to achieve in our
program. The pop(ke)) method removes a specified item (we specify the key that will be

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the

bSG Erasmus+ Programme oo ; ; ; ;
I ot the Euipsen Uriion Com;f.zzwon cannot be held responsible for any use which may be made of the information
contained therein.

3D Design for Education

.” MAKER SCHOOLS

removed) and returns its za/ue, which means that we can use it in the program. The popitem()
method removes an arbitrary key-value pair and returns it. The del keyword can remove an
individual item (del dicz_name|key)) or the dictionary itself. All items from a dictionary can be
removed at once with the clear() method, in which case the dictionary will remain empty. See the
examples below.

To get the value of a specific key, we use the get(key). If the key does not exist, None is returned
by default. We can also access a value with i/ name|fey| method, as already explained above.
With this method, if the key is not found, we will get an error and the program will terminate.

factor Run Toc

& e

~ I startin ©characters_and_houses = {
I

~ I ven
>m 2 5

Ac ing a value with the get() method
value = characters_and_houses.get(
print(value)

Ac 1g a value with the [] method
value = characters_and_houses[
print(value)

Trying to acc a value that d

value = characters_and_houses.get(

print(value)

\6ergana\PycharnProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples.py

ss finished with exit

There are several methods that allow us to get all the key-value pairs (items()), all the values
(values()) or all the keys (keys()) of a dictionary (e.g. in order to iterate over them). You will notice
that these methods return lists containing the information we need. See the examples below.
There are also other methods that you can learn gradually as you start working with dictionaries.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

https://www.programiz.com/python-programming/methods/dictionary/get
https://www.programiz.com/python-programming/methods/dictionary/items
https://www.programiz.com/python-programming/methods/dictionary/values
https://www.programiz.com/python-programming/methods/dictionary/values

’ MAKER SCHOOLS

3D Design for Education

xamples2.py
?characters_and_huuses

yrint(characters_and_houses.items())
yrint(characters_and_houses.keys())
¢ int(characters_and_houses.values())

cts\startingWithPythonl\venv\ ts\python.exe D:/Users/Gergana/PycharmpP /startingWithPythonl/examples2.py
ark'), ('Arya Stark', 'Stark'), ('R 'Baratheon'), ('Tyrion Lannister', 'Lannister'), ('Cersei Lannister', 'Lannister')])
rya Stark', 'Robert Baratheon', 'Tyrion Lannister’' Cersei Lannister'])
‘Lannister’, ‘Lannister'])

Process finished with exit code 0

Let us now see how we can iterate over a dictionary. We can iterate over the key-value pairs, over
the values or over the keys, using the results from the methods shown above. There is also a
simple way for iterating over the keys, namely for ey in dictionary_name:.

pair on a new line

It is sometimes useful to check if a key is present in the dictionary. This is done using the
keyword in or the keywords not in. The syntax is the same as for lists. The program will return a
Boolean — True or False.

The Eurgpean Commission's support for the production of this publication does not

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
* * Erasmus+ Programme T . . R A
e of thiss Eutsean Ution Commission cannot be beld responsible for any use which may be made of the information

contained therein.

’ MAKER SCHOOLS

3D Design for Education

% examples2.py

?characters_and_houses = {

in characters_and_houses)
in characters_and_houses)
not in characters_and_houses)

s\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py

Dictionaries in Python come with several useful in-built functions, such as len() (returns the
number of elements in the dictionary) and sorted() (sorts the keys in a dictionary and returns
them as a list).

o exa y
?char\acter\s_and_huuses_l

:]Schar‘acter‘s_and_huuses_Z

yrint(len(characters_and_houses_1))

o yrint(len(characters_and_houses_2))
IE

yrint(sorted(characters_and_houses_2))

s\startingWithPythonl\venv\Scripts\pyth: :/Users/Gergana/PycharmPro /startingWithPythor

['Arya Stark', 'Cersei Lannister’, 'Jaime Lannister', 'Jon Snow', 'Margaery Tyrell', 'Tyrion Lannister']

Process finished with exi:

Functions

Functions in Pyhton are blocks of code that perform a specific task. They are given a name and
can be called (invoked) by that name. They are useful because they break the program’s code into
smaller, easier to understand and reusable modules. Functions can take parameters and can return
a result. There are, however, functions that take no parameters and/or return no result (if a
function does not return a result, then it only executes a code, such as printing).

Functions are declared by the keyword def and their name, e.g. def prnt_mry_orders:. 1f the
function will accept parameters, they are added inside parentheses after the name. The executable
bloc of code comes after the : (colon), on a new line, indented. The declared function is like a
template for a small sub-program. It does not do anything until it is invoked in the main program
and receives specific arguments if applicable.

Once declared, a function can be invoked by its name, followed by parentheses, in which
arguments are passed in (unless the function accepts no parameters). The parameters are thus the
variables included in parentheses when we declare the function, and the arguments are the concrete
values of these variables passed in the function when it is invoked.

In the example below, the function just prints and returns nothing. Notice that the parameter
a_list is a variable to which we gave a generic name when we declare the function — this is not a
specific list that we may use. When we invoke the function, we will pass in it as an argument a

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

*

3D Design for Education

.” MAKER SCHOOLS

concrete list, and the function will perform the specified tasks with it. The function can thus be
invoked multiple times for different lists, and will always perform the same tasks for the specific
list that we pass in as an argument. This is why functions make code reusable. We do not need to
write this code again and again every time we need this task completed, we just invoke the
function and pass in it the specific list as an argument. The argument we pass in the function
when invoking it has to be of the same datatype as the parameter we intended when declaring the
function. While Python does not require us to specify the datatype, the function may not work if
the datatype is incorrect.

= input().split(

Declaring the function

print_my_list(a_list):

for element in a_list:

print(element,

Invoking the function for the con
print_my_list(character_list)

s\Gergana\PycharmpP \startingWithPythoni\ve cripts\python. : /Users/Gergana/PycharmProjects/startingWithPythonl/examples. py
r preferred char. separated by a coma and an empty spa

finished with exi

See also an example of a simple function that returns a result back to the program, which then
uses this result as it needs to. After that, try inventing your own program which declares and
invokes a function and test if it works correctly.

v M startin print(
~ Mven
>m 2 user_age = int(input())
>

Declaring the function
Jdef specify_category(age):

category =

if age < 12:
category =

elif 12 <= age < 15:
category =

eturn category

Invoking the function

if specify_category(user_age) ==
print(
elif specify_category(user_age) ==

int(

ts\startingWithPython1\venv\Scripts\python.exe D:/Users/Gergana/PycharnPr [startingWithPython1/examples.py

end playing games 2, 3 and &

The Eurgpean Commission's support for the production of this publication does not

gl Erasmus+ Programme

I ot the Euipsen Uriion Commission cannot be beld responsible for any use which may be made of the information

contained therein.

Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the

3D Design for Education

.” MAKER SCHOOLS

The parameter can have a default value, which will be taken as an argument if the function is
invoked without an argument. In the example below, if the user does not write its name, we will
greet her simply as “Friend”. This makes the program more suited to different user behavior,
such as not typing anything on the console.

startingWithPython1
amples.py o
print(

name = input()

Declaring the function

Sdef greet_user(user_name= NE
I
& print(+ user_name)

Invoking the function, with an argument as defined by the u or with the default argument, namely "Friend"
if name != and name !=
greet_user(name)
greet_user()
15
examples
D:\Users\Gergana\PycharmProjects\startingWithPythoni\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples.py
What is your name:

Welcome, Friend

Process finished with exit code 8

In Python, we can also functions with the so-called keyword arguments that are named just like
the parameters. In that case, the order in which we pass in the arguments is not important
because they will be identified by their name.

startingWithPython1 = i
Hr @ fe xamples2.py
startin in (
int(input())
int(
int(input())

f area(width, height):
return width * height

Arguments are passed as keywords, so the position does not matter
rint(area(=a, =h))

\Users\Gergana\PycharmProjects\startingWithPythoni\venv\Scripts\python.exe D:/Users/Gergana/PycharmProjects/startingWithPythonl/examples2.py
Write the rectangle height as a whole number:

Write the rectangle width as a whole number:
A8

48

Process finished with exit code ©

Objects and Classes

Objects are widely used in all programming languages in a paradigm of programming called
Object Oriented Programming (OOP). When doing OOP, related properties (attributes) and

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

3D Design for Education

ﬁ MAKER SCHOOLS

behaviors are bundled together into Objects. The program maintains several Objects that can
interact with each other. Objects solve a lot of issues in programming and, together with
functions, allow for code to be reused instead of continuously retyped.

To do OOP in Python, we need to know several concepts and learn some syntax, which are in
fact quite similar to what we already know from other programming languages.

Classes

The Class is a blueprint for creating Objects. Creating a new class creates a new type of object,
allowing new instances of that type to be made. The Class provides a description of the Object,
such as what its basic attributes are and what its behaviors are. Each Object that we later create
based on this blueprint is in fact a particular instance of its Class, with specific values for the
properties. Classes contain class attributes (common to all instances) and instance attributes.
Classes can include class methods for modifying the Class state and instance methods for
modifying the instance.

The _init_ () method initializes an object’s initial attributes (it is written with a double leading
and trailing underscore).

The parameter sclf is a reference to the current instance of the Class. We use it to access variables
that belong to this class and it is also always the first parameter that is passed in instance methods
and to the init function.

If all this sounds too abstract, look at the example below. We create a Class Character. Each
instance will have three attributes - a name, a House, age. These are the instance attributes of the
Class, and they are also parameters in the _ init_ function. When we create an instance, the
__init__ function will expect 3 arguments — for the name, for the age and for the House. The
Class has a Class attribute literary_origin, which is “A Song of Ice and Fire” for all instances of
this Class. For attributes that are optional, we need to give a default value and they should be
indicated as the last parameters in the __init__ function. In our case, we give a default age of 0.

Character:

Class attribute
literary_origin =

Instance attributes. We give age a default value of ©, which means we are not obliged to provide this information
def (, name, house, age=0):

-hame = name

.house = house

.age = age

Instances of Classes

We learned until now that the class is like a blueprint while an instance is a copy of the class with
actual values. Now we are ready to create as many instances of this Class as we need, by passing
in it the concrete names, Houses and ages as arguments for each instance. An instance of the
Class is an Object. Below we create 3 concrete characters based on the Class blueprint. This is
done by initializing an object with 7aze_of class(attributes).

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
BRI Erasmus+ Programme Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

’ MAKER SCHOOLS

3D Design for Education

startingWithPythe
EHr © o % examples2py
= 1 s Character:
Class attribute
literary_origin =

Instance attributes. We give age a default value of @, which means we are not obliged to provide this information
def (, name, house, age=0):

.name = name

.house = house

.age = age

jon = Character(

robb = Character(

dany = Character(

|
To access a concrete Object’s attributes, we write the name of the object, followed by a dot and
the name of the attribute. For example, we can access Robb’s age by robb.age. See the example

below and notice the output. The program has retrieved the attributes of our characters.

B © &

v M startin
Vv I ven -

> 2 # Class attribute

>m

Character:

literary_origin =

Instance attributes. We give age a default value of 0, which means we are not obliged to provide this information
(, name, house, age=0):
.name = name
.house = house
.age = age

jon = Character(, 14)
robb = Character(, 14)
dany = Character(s)

yrint (f"{jon.name} {jon.house} {jon.age}

{dany.name} {dany.house} {dany.age}

cripts\pythe e gana/PycharmProjects/startingithPythond/e

Once we have accessed an attribute of the Object, we can modify it by assigning a new value to
it. See the example.

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

> 1l Externc
%S

Py
Character:

Class attribute

literary_origin =

’ MAKER SCHOOLS

3D Design for Education

Instance attributes. We give age a default value of @, which means we are not obliged to provide this information

def (, name, house, age=0):

.name = name
.house = house
.age = age

jon = Character("J

robb = Character("Robb
dany = Character("Daenerys
jon.house = "Targarye
print(f"{jon.name}'s Hous

to {jon.house}")

Users\Gergana\PycharmProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/6ergana/PycharnProjects/startingWithPythonl/examples2. py

Jon Snow's House is now changed to Targaryen

Process finished with exit code 8

We can access the Class attributes in a similar way. See below.

[File

15p on formatting strings:

If you want to write quotation marks inside a formatted string, you have two options:

One is to use the quotation marks format that is different from the format you typically
use for strings. Below, we write strings in double quotation marks, so we use single
quotation marks inside the text.

Another option is to “escape” the character by typing \ before it. Thus, Python will know
that it is not part of the code but should be printed as a special character. You can escape
any special character in this way. Tty it yourself.

startingWithPython1 | ¢

amples? py
Character:

Class attribute
literary_origin = "A ¢

Instance attributes. We give age a default value of 8, which means we are not obliged to provide this information

def (, name, house, age=0):

.name = name
.house = house

.age = age

jon = Character("Jo
robb = Character("Robb
dany = Character("Daene
jon.house = "Targarye

garyen", 13)

print(f"{jon.name} is a character from the book '{jon.literary_origin}'")

Users\Bergana\PycharnProjects\startingWithPythonl\venv\Scripts\python.exe D:/Users/Gergana/PycharnProjects/startinglithPythonl/examples2. py
Jon Snow is a character from the book 'A Song of Ice and Fire®

Process finished with exit code ©

Let us now look at instance methods. They are defined inside the Class but are used to get the
contents of an instance or to do something with the instance attributes. They usually define
behaviors. Their first parameter should always be self, like in the _ init function. In the
example below, we create for our characters two methods — get older() and travel(). The
oct_older() method ages the character with 1 year, while the travel() method returns a text

The Eurgpean Commission's support for the production of this publication does not

R, Co-funded by the
SO Erasmus+ Programme
ARH of the European Union

constitute an endorsement of the contents, which reflect the views only of the authors, and the
Commission cannot be beld responsible for any use which may be made of the information
contained therein.

.” MAKER SCHOOLS

specifying where s/he travels from and where s/he travels to. When we call these methods in the
program, we call them in the same way as we access attributes — Olyect’s name, followed by
anethod_name — e.g. jon.travel(). We also need to pass in any arguments that the method expects.
The get_older() method does not require an argument because it always ages the character with 1
year. The travel() method requires as arguments the travel origin and the travel destination. You
can modify the get_older() method to increase the character’s age with a specified number of
years. In this case, you need to include this number as a parameter when defining the method and
then pass it in as an argument when you call the method. Try this yourself.

Character:
(, name, house, age=0):
.name = name
= house
.age = age

get_older():

.age += 1
, origin, destination):

.format (.name, origin, destination) # This is a different way of f

jon = Character(
jon.get_ol 0

jon.get_older()

(.format(jon.name, jon.age))
(jon.travel(s))

Concluding remarks

Congratulations, you have learned the basics of Python. If you took the time to re-create the code
ot code your own examples, you are ready to start working on more complex algorithms and to
solve exercises. Go to HackerRank and start preparation, going gradually from Easy to Medium
and Hard modes.

There is of course a lot more to learn in Python, but as soon you encounter a task that you
cannot solve, you can search the internet for solutions. The information available on Python is
ample. Sites such as https://stackoverflow.com can help you find solutions to even seemingly
difficult problems. Another wuseful source is the official Python documentation at
https://docs.python.org. Finally, in PyCharm itself, by holding CTRL and clicking on an in-built
method, you will get all the relevant documentation, which is a great time-saver.

Happy coding!

The Eurgpean Commission's support for the production of this publication does not
Rt Co-funded by the constitute an endorsement of the contents, which reflect the views only of the authors, and the
B Ereemust-Frogramiti Commission cannot be beld responsible for any use which may be made of the information
* of the European Union . .
contained therein.

https://stackoverflow.com/
https://docs.python.org/

	We’re on the Web!
	Why learn Python?
	Getting started
	Install an Integrated Development Environment (IDE)
	Create a project in PyCharm
	Register on HackerRank to practice
	Create your first program

	Variables and datatypes
	Starting with the basics
	Working with the console
	Arithmetic operations
	Printing on the console
	Importing libraries
	Debugging

	Working with numbers
	Rounding numbers
	Absolute value

	Conditional statements
	Checking if a condition is True or False
	Using conditional statements

	Initialization and lifetime of variables in Python; global vs. local variables
	Loops in Python
	For loop
	Examples of using for loops
	While loop
	Nested loops

	Working with text
	Basic functions
	More about formatting strings

	Lists
	Tuples
	Sets
	Dictionaries
	Functions
	Objects and Classes
	Classes
	Instances of Classes

	Concluding remarks

