
 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 
 

We’re on the Web! 

Visit us at:  

https://makers-project.eu 
 

 

USING PYTHON TO ENABLE CREATIVE 

EXPLORATIONS OF 3D MODELS 

Creative Commons licence - 
Attribution-NonCommercial-
ShareAlike CC BY-NC-SA  
 

 
 

Year of  publication: 2022 

Editors: Nektarios Moumoutzis 
and Aristarchos Tzatzos 
 
 

Project “MAKER SCHOOLS: 
Enhancing Student Creativity and 
STEM Engagement by Integrating 3D 
Design and Programming into 
Secondary School Learning” 
(Agreement no. 2020-1-BG01-KA201-
079274) 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

2 

Contents 
 

1. Introduction ....................................................................................................................... 5 

1.1 Abbreviations ..................................................................................................................................... 7 

1.2 Getting to know the Micro:bit ......................................................................................................... 7 

1.2.1 What is micro:bit ........................................................................................................................ 7 

1.2.2 Front side overview .................................................................................................................... 8 

1.2.3 Back side overview ..................................................................................................................... 9 

1.2.4 Edge Connector and Pinout ................................................................................................... 10 

1.2.5 Expansion Breakout Board ..................................................................................................... 11 

1.3 The EduBlocks programming environment ................................................................................ 11 

2. Measuring Time - First Steps in Python using Micro:bit LEDs and Buttons ............... 14 

2.1  Aim ................................................................................................................................................... 14 

2.2 Synopsis ............................................................................................................................................. 14 

2.3 Theory ............................................................................................................................................... 14 

2.3.1 The Python programming language....................................................................................... 14 

2.3.2 Functions and modules in Python / EduBlocks ................................................................. 14 

2.3.3 Variables and loops .................................................................................................................. 15 

2.3.4 Data types .................................................................................................................................. 17 

2.3.5 Micro:bit LED screen .............................................................................................................. 17 

2.3.6 Micro:bit buttons ...................................................................................................................... 18 

2.4 Practice .............................................................................................................................................. 19 

2.5 Time for fun ..................................................................................................................................... 22 

2.6 Self check .......................................................................................................................................... 23 

3. Fill the screen - Wireless communication among micro:bit boards ............................... 25 

3.1  Aim ................................................................................................................................................... 25 

3.2 Synopsis ............................................................................................................................................. 25 

3.3 Theory ............................................................................................................................................... 25 

3.3.1 Making choices in Python ....................................................................................................... 25 

3.3.2 Logical expressions in Python ................................................................................................ 28 

3.3.3 Functions in Python ................................................................................................................. 29 

3.3.4 Images ........................................................................................................................................ 30 

3.3.5 Radio ........................................................................................................................................... 31 

3.3.6 Accelerometer ........................................................................................................................... 31 

3.4 Practice .............................................................................................................................................. 33 

3.5 Time for fun ..................................................................................................................................... 41 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

3 

3.6 Self check .......................................................................................................................................... 41 

4. Battleship - Deepen Your Knowledge about Python and Micro:Bit .............................. 43 

4.1 Aim..................................................................................................................................................... 43 

4.2 Synopsis ............................................................................................................................................. 43 

4.3 Theory ............................................................................................................................................... 43 

4.3.1 Global vs Local variables ......................................................................................................... 43 

4.3.2 String manipulation .................................................................................................................. 45 

4.3.3 Objects ....................................................................................................................................... 47 

4.3.4 Functions as objects ................................................................................................................. 47 

4.4 Practice .............................................................................................................................................. 48 

4.5 Time for fun ..................................................................................................................................... 56 

4.6 Self check .......................................................................................................................................... 56 

5. A Quiz Game - Advanced Topics in Python with Micro:Bit .......................................... 59 

5.1  Aim ................................................................................................................................................... 59 

5.2 Synopsis ............................................................................................................................................. 59 

5.3 Theory ............................................................................................................................................... 59 

5.3.1 Lists and tuples ......................................................................................................................... 59 

5.3.2 Dictionaries ............................................................................................................................... 60 

5.3.3 For - enumerate ........................................................................................................................ 61 

5.3.4 Random numbers ..................................................................................................................... 62 

5.3.5 Try-except ..................................................................................................................................... 62 

5.3.5 Connecting an external speaker with micro:bit .................................................................... 63 

5.4 Practice .............................................................................................................................................. 63 

5.4.1 True-False quiz game ............................................................................................................... 63 

5.4.2 Multiple choice quiz game ....................................................................................................... 66 

5.5 Time for fun ..................................................................................................................................... 69 

5.6 Self check .......................................................................................................................................... 69 

6. Introduction to Raspberry Pi Pico .................................................................................. 71 

6.1 Aim..................................................................................................................................................... 71 

6.2 Synopsis ............................................................................................................................................. 71 

6.3 Theory ............................................................................................................................................... 71 

6.3.1 What is the Raspberry Pi Pico ................................................................................................ 71 

6.3.2 Pinout ......................................................................................................................................... 71 

6.3.3 Micro:bit vs Raspberry Pi Pico ............................................................................................... 72 

6.3.4 Classes ........................................................................................................................................ 73 

6.3.5 Electronic components ............................................................................................................ 74 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

4 

6.3.6 Interrupts ................................................................................................................................... 75 

6.3.7 Thonny Python IDE ................................................................................................................ 76 

6.4 Practice .............................................................................................................................................. 78 

6.5 Time for fun ..................................................................................................................................... 83 

6.6 Self check .......................................................................................................................................... 84 

References ........................................................................................................................... 86 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

5 

1. Introduction 

 
This is one of  the two modules of  the Extracurricular Training Program “Python for 3D printing 
and creative explorations of  3D models” developed in the framework of  the Erasmus+ 
MAKERS project (https://makers-project.eu/). In the spirit of  the project’s focus on cross-
curricular approaches, and taking into account the target groups’ expressed interests, Intellectual 
Output 2 showcases how STEM education can combine 3D design and printing with 
programming/coding, including coding of  selected microcontrollers that can be used in 3D 
designs to develop mobile robots, and various automation and physical computing creations. 

Programming and coding are among the key skills that are currently targeted in both curricular 
and extracurricular STEM education. Students start learning basic Computer Science and 
programming already at the start of  high school. Extracurricular activities such as Coding Clubs 
are among the most popular after-school STEM activities. More recently, the popularity of  
combining programming and the Arts has increased (not least due to the availability of  accessible 
software like Scratch and App Inventor), and digital creativity is becoming a major theme of  
science outreach events. All in all, there is little doubt that learning various programming 
languages benefits both career prospects and generic skills like problem solving, persistence, and 
collaboration. The benefits are even more pronounced when Programming can be combined 
with design and creativity. 

Offering opportunities to combine coding with 3D design and printing can help strengthen the 
programming skills of  students, while also building skills for design. For such opportunities to be 
realized in schools, however, both teachers and students need teaching/learning resources and 
guidance. 

Within this overall framework, the Extracurricular Training Program “Python for 3D printing 
and creative explorations of  3D models” aims to provide tools, resources, and support for 
combining Programming/Coding and 3D technology in extracurricular STEM education to 
achieve engaging and effective learning in both fields. The resources can be used by teachers to 
design their own training, as well as by students who want to learn on their own. 

The expected impact can be summarized as follows: 

 Enable and motivate Computer Science teachers to design and deliver extracurricular 
STEM or STEAM training which exploits the Python programming language for both 
producing and creatively exploring 3D models 

 Motivate and enable students to learn how Python can be used in emerging technologies 
such as 3D 

 Raise awareness about the benefits of  combining Programming and 3D technology for 
more effective STEM learning. 

The methodology applied to the design and development of  both modules is based on: 

 Combination of  theoretical training and sample exercises, for which sample code has been developed: The 
training program provides theoretical training by introducing relevant Python syntax and 
data structures (module A), as well as the interface and functions of  OpenSCAD (module 
B), including the use of  Python libraries with the software. Each major element in the 
theoretical presentation is followed by tasks for the learners. Learners are assisted with 
the sample code. They are able to follow the procedures step-by-step, learning in the 
process. Additional exercises are suggested for practice. 

https://makers-project.eu/


 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

6 

 Learner assessment guidance: Each module defines the knowledge and skills that are 
developed and how they can be measured. Sample tests are provided to help teachers and 
to allow for self-assessment on the part of  individual learners. 

The rest of  this document contains a number of  sections that describe activities designed to be 
offered in sessions of  3-6 hours each, depending on the level of  knowledge and skills targeted. 
To offer this flexibility in terms of  duration, each section points to certain extensions that can be 
done beyond the minimum duration of  3 hours. The first section is introductory and contains an 
overview of  the micro:bit microcontroller (components of  the micro:bit board, edge connectors, 
pinout, expansion breakout board) and the EduBlocks visual programming environment that 
enables the creation of  MicroPython using click-and-snap graphical blocks like Lego bricks. 
Following this introductory section, the material presented is organized as follows: 

 Measuring Time - First Steps in Python using micro:bit LEDs and Buttons: Overview of  
Python Language, functions and modules, variables and loops, data types. Micro:bit LED 
screen, buttons. 

 Fill the Screen - Wireless Communication among micro:bit boards: Making choices in 
Python, logical expressions, functions. Micro:bit images, radio, accelerometer, wireless 
communication. 

 Battleship - Deepen your Knowledge about Python and micro:bit: Global vs local 
variables, string manipulation, objects, functions as objects. More elaborate wireless 
communication among micro:bits. 

 A Quiz Game - Advanced topics in Python with micro:bit: Lists and tuples, dictionaries, 
for / enumerate, random numbers, try-except. Connecting external speakers to the 
micro:bit. 

 Introduction to Raspberry Pi Pico: Raspberry Pi Pico overview, pinout, comparison with 
micro:bit. Classes, electronic components, interrupts, Thonny IDE. 

All sections follow the same organization 

 Aim: The aim of  the activity presented in each section linking to specific topics in 
Python programming language on the one side and microcontroller/electronic 
components. 

 Synopsis: An overview of  the specific project that will be developed in terms of  its 
functionality and use. 

 Theory: Details about the corresponding programming structures presented as well as 
physics and/or electronic components used and their operation. 

 Practice: A step-by-step development of  the specific project with all the necessary 
explanations and triggers for observations to enhance the understanding of  the topics 
covered. 

 Time for fun: Triggers for further work on the project to develop interesting extensions 
that help the students deepen their knowledge and further develop their skills and 
competencies. 

 Self-check: A multiple choice quiz that helps the students assess the skills and 
competencies they have developed. 

This module can be effectively combined with the Module “Using Python for Procedural 3D 
Content Generation for 3D Printing”. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

7 

The module is transferable to non-formal learning contexts and youth work. It would not require 
a high level of  prior knowledge. It is especially transferrable to VET training.  

 

1.1 Abbreviations 

ADC  Analog-to-digital 

BBC  British Broadcasting Corporation 

GND  Ground or Earth 

GPIO  General Purpose Input/Output 

HEI  Higher Education Institutions 

IDE  Integrated Development Environment 

LED  Light Emitting Diode 

PC  Personal Computer 

PWM  Pulse-width Modulation 

SE VET Secondary Education VET 

SPI  Serial Peripheral Interface 

STEAM Science, Technology, Engineering, Arts and Mathematics 

STEM  Science, Technology, Engineering and Mathematics 

USB  Universal Serial Bus 

VET  Vocational Education and Training 

 

1.2 Getting to know the Micro:bit 

1.2.1 What is micro:bit 

 

Micro:bit is an open-source embedded system designed by the British Broadcasting Corporation 
(BBC) for use in computer education. It is a single development board with a microcontroller and 
various sensors, buttons, LEDs, and GPIOs included. It is really flexible when it comes to 
programming since it supports modern programming languages such as Python and JavaScript. 
There are also some block-based editors that offer an intuitive graphical user interface for 
beginners, much like the popular Scratch platform, one of  which we are going to see in the next 
section. 

The next two subsections provide an overview of  the micro:bit board we are going to use, 
showing all of  its components and their function. As of  2021, there are two versions of  the 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

8 

board, with their key difference being the addition of  a speaker, a microphone, and a touch-
sensitive button to the newest version. The overview that follows presents both versions. 

1.2.2 Front side overview 

The figure below depicts the front side of  micro:bit V1 on the left and micro:bit V2 on the right. 
All numbered elements are explained below the figure. 

  

1 
Two programmable buttons A and B that 
can be assigned in code. 

5 
GND is the ground/Earth pin. It is used 
to complete electric circuits when you use 
external components. 

2 

25 LEDs arranged in a 5x5 matrix make 
up a display that can be used to show 
words, numbers, or images. The display 
can also be used as a sensor that measures 
how much light is falling on it. 

6 
(V2 only) A touch-sensitive button that 
can be used in the same way as buttons A 
and B. 

3 

Pins - GPIO that can be used to attach 
external components such as headphones, 
motor drivers, more buttons, etc. They 
can also sense touch if  they are set up 
accordingly. 

7 

(V2 only) Microphone LED to indicate 
the sound levels that the microphone 
picks. Next to it is a small hole leading to 
the actual microphone. 

4 
3V power pin that can be used to power 
external electronics. 

  

 

 
 
 
 
 
 
 
 
 
 
 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

9 

 
 

1.2.3 Back side overview 

The figure below depicts the back side of  micro:bit V1 on the left and micro:bit V2 to the right. 
All numbered elements are explained below the figure. 

  

1 
Radio & Bluetooth antenna used to 
communicate with other micro:bits by 
radio and with other Bluetooth devices. 

9 
Battery socket that can be used to power 
the micro:bit with two AAA batteries or 
3V, instead of  the USB port. 

2 

Processor & temperature sensor. The 
processor is the brain of  the micro:bit 
and the sensor can be used to sense the 
environmental temperature. 

10 
USB interface chip that is used to flash 
the new code to the micro:bit and 
communicate with a computer. 

3 
Compass that can measure the strength 
of  magnetic fields or find magnetic 
North. 

11 
(V2 only) Speaker that can be 
programmed in code. 

4 

Accelerometer that measures forces in 3 
dimensions including gravity so we can 
determine the orientation of  the board. It 
can also be used as a shake sensor. 

12 
(V2 only) Microphone that can be used 
to interact with the board by voice or 
sound. 

5 

Pins - GPIO that can be used to attach 
external components such as headphones, 
motor drivers, more buttons, etc. They 
can also sense touch if  they are set up 
accordingly. 

13 
(V2 only) Red power LED indicating that 
the board is powered. 

6 
Micro USB port used to connect the 
micro:bit to a computer so that it can be 
programmed. 

14 
(V2 only) Yellow USB LED indicating 
communication with a computer by 
flashing. 

7 

Single LED that flashes when a program 
is being downloaded to the micro:bit or 
stays on to indicate that the board is 
powered. 

15 

(V2 only) Reset & power button. Press 
once to restart the micro:bit. Press and 
hold to put it in power-saving mode 
when used with batteries and press once 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

10 

again to wake it. 

8 Reset button to restart micro:bit.   

1.2.4 Edge Connector and Pinout 

The following figure presents in detail the edge Pins-GPIO section of  the micro:bit (V1 on the 
left and V2 on the right). 

     

LED Col 

These pins are reserved for 
the display. In order to use 
them, we must first disable 
the display’s driver by calling 
display.enable(false). To turn 
the display back on we call 
display.enable(true) 

ANALOG IN 

These pins can be used to 
read analog values of  
voltages applied to them. For 
example, to read pin 1 we 
use pin1.read_analog()  

BUTTON A & 
B 

These pins are connected to 
the onboard buttons of  the 
micro:bit.  

Pins 13-15 

These pins can be 
configured for 
communication with other 
devices using the Serial 
Peripheral Interface (SPI) 
bus. 

P12 
This pin is reserved for 
accessibility and must never 
be used. 

Pins 19 & 20 

These pins can be 
configured for 
communication with other 
devices using the I2C bus 
protocol. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

11 

GND 
These pins are the ground 
point connection. 

+3V3 
These pins are the supply 
voltage of  3.3 Volts. 

 

1.2.5 Expansion Breakout Board 

The pins of  the edge connector of  the micro:bit are not so useful due to their very small size. To 
deal with this problem, an expansion breakout board can be used, which can be purchased 
separately and is shown in the image below. 

 

This expansion board is designed to hold the micro:bit module in the big black connector and 
break out all the pins below it. The pins can be accessed using the yellow headers which have 
their corresponding pin number written above them. Also, the pins in the header are 
accompanied by pairs of  3.3 V and GND pins which can be used to power the external devices 
we want to use with micro:bit. There are many different models of  the expansion breakout 
board. The one depicted above has some more functionality built into it. For example, we have a 
3.5 mm audio jack, a built-in speaker (Buzzer), an on-off  switch, a micro USB port, and a toggle 
button for the speaker. 

1.3 The EduBlocks programming environment 

EduBlocks is an online editor for programming the micro:bit and other development boards 
using the Python programming language. To begin, navigate to https://edublocks.org/ and click 
the “Get Started” button. Then, you should select the “BBC micro:bit” under the “Create New 
Project” section. Now you are ready to use the EduBlocks editor to program the micro:bit. It can 
be used in Split, Blocks or Code view by selecting the appropriate tab under the name of  the 
project (initially, the name is “Untitled Project”). The Blocks view presents the code in graphical 
blocks, while the Code view presents it in text form. The Split view combines both and it is the 
default option when you start the EdubBlocks editor. It is advisable to use this option since it 
shows in real-time the generated Python code from the graphical blocks.  

https://edublocks.org/


 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

12 

     

 

We can see that in the Βlocks view as well as in the corresponding area of  the Split view, all 
commands are categorized and color-coded in order to better indicate their function category. 
Blocks can be easily selected from the categories on the left and dragged in the white area, where 
they can be connected with other blocks to form scripts (chunks of  code). One or more scripts 
compose our program which can be downloaded as a file and saved to the micro:bit’s memory. 
Once a program file is saved successfully, the micro:bit can run the code and we can see the 
outcome and/or  interact with it. 

To flash a program to the micro:bit we first have to connect it to our computer through a micro 
USB cable. Let us see how: Recreate the following simple code in EduBlocks. The corresponding 
blocks can be found in the categories Basic and Display. Connect your micro:bit with a micro 
USB cable to your computer, click the “Connect” button on Edublocks and make the 
appropriate selection in the pop-up window that will appear. Once your code is ready and your 
micro:bit is connected properly, click the “Flash” button. Once the code is uploaded to the 
micro:bit, a smiley face will appear on the built-in LED screen. 

 

In the text-based form of  the code we can start writing our code from scratch or edit the code 
generated by transforming whatever blocks have been previously entered in block-based form. 
The text-based form is very useful because it helps us move from block-based programming to 
usual text-based programming in the Python programming language. Block-based programming 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

13 

is much easier for beginners because they do not have to remember all the syntactic details of  the 
programming language. Experts prefer text-based programming because they can develop their 
code faster. Consequently, the most effective learning path for novices is to start with block-
based programming and gradually move to text-based programming. EduBlocks is an ideal 
environment for such a learning path.  

Once we learn a general-purpose programming language, such as Python, we have the basic 
knowledge to program anything that we can imagine, from applications or games that run on our 
computer to projects that use micro:bit or other microcontrollers. Even though text-based 
programming can be a bit more difficult to learn and memorize, we can really benefit from it. 

The learning activities 2, 3, 4, and 5 of  this module take advantage of  the EduBlocks support for 
a gradual transition from block-based to text-based programming. Both the block-based and the 
text-based code are presented so that they can be easily compared and used in the Edublocks 
editor. Consequently, this module is to be used as an introduction to the micro:bit board as well 
as to the Python programming language. The module ends with a learning activity that introduces 
the Raspberry Pi Pico board, which is more powerful than the micro:bit but has fewer built-in 
components. 

Happy Python coding! 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

14 

2. Measuring Time - First Steps in Python using Micro:bit LEDs and 
Buttons 

 
2.1  Aim 

The aim of  this activity is to get familiar with the EduBlocks Programming Environment and 
start using some basic operations, functions, and commands of  the Python programming 
language as well as micro:bit LED matrix and buttons. Our coding project will be a simple game 
to test the player’s reflexes by measuring the time needed to press a micro:bit button as soon as a 
countdown finishes. 

2.2 Synopsis 

In this activity we will develop a simple game that measures the player’s response time to visual 
stimulus. The game will show a countdown from three (3) to zero (0) on the micro:bit’s display at 
the end of  which the player has to quickly press buttons A or B. After that, the game will 
calculate the player’s reaction time and finally display it. 

2.3 Theory 

2.3.1 The Python programming language 

A computer program can be considered as a sequence of  instructions that are executed one after 
the other. These instructions could present information on the screen, receive user input from 
the keyboard, process data and store the results in computer memory or even pause the execution 
of  the program for a certain time duration.  

There are many programming languages that can be used to develop a program. Python is one of  
the most interesting ones to learn due to its simplicity and popularity. It was created by Guido 
van Rossum in the ’90s. It is a general-purpose programming language, meaning that it can be 
used to develop any kind of  computer program. It is an interpreted language, meaning that most 
of  its implementations execute instructions directly one by one, without the need to compile a 
Python program as a whole into machine language instructions. The Python interpreter 
transforms the Python program into an intermediate language which is again translated into 
machine language that is executed.  

One of  the merits of  Python when it comes to physical computing is its object orientation. 
Object-oriented Programming is a programming paradigm that addresses the issue of  structuring 
programs by providing the means to specify properties and behaviors bundled into individual 
objects. It is an approach for modeling concrete, real-world things as software objects, which 
have some data associated with them and can perform certain functions. This way, electronic 
devices such as LEDs, sensors, etc., can be very effectively modeled as objects and easily 
manipulated through software. 

2.3.2 Functions and modules in Python / EduBlocks 

To be able to use certain functions in a Python program, we should import the corresponding 
libraries that provide the specifications of  the desirable functions. One such library is the 
microbit library which contains everything needed to program the micro:bit board. By importing 
the micro:bit library the Python interpreter essentially pre-loads every function or any other 
object that is available for programming the micro:bit. The syntax of  such an import can be seen 
below, both in text-based and block-based code. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

15 

from microbit import *  

  

The statement begins with the keyword from, followed by the name of  the library and the 
keyword import. Lastly, we specify the functions or other objects we want to import from this 
library separated with commas. In case we want to import everything, we use the asterisk 
character * as above. 

In this activity, in order to create the countdown feature of  the game, we have to pause the 
execution of  the code several times. To do so, we will use the sleep function. Its syntax is shown 
below. 

sleep(1000)  

 
 

To use this function, we write its name sleep followed by opening and closing parentheses. Inside 
the parentheses, we type a number that indicates the time to pause the program in milliseconds. 
1000 is 1 second, so the statement above, when executed by a program, will cause a delay of  1 
second before the execution of  the next statement below it. 

To measure the time that elapsed between two time points, we need to record the time t1 of  the 
first time point and the time t2 of  the second time point and then compute the difference t2 - t1. 
To do so in Python we have to import the utime library as shown below.  

import utime 

 

This library offers a function to read the value of  an onboard counter which is increasing in 
microseconds and wraps around after some value. Note that in order to transform a certain 
number of  microseconds into seconds we have to divide it by 1,000,000 (one second 
corresponds to 1000 milliseconds and 1 millisecond corresponds to 1000 microseconds). Here is 
the function that will read the value of  the time counter: 

utime.ticks_us() 

 

We observe that this block has an oval shape, which is different from the shape of  the previous 
blocks we used. The round shape indicates that this block corresponds to a certain value that is 
returned by the corresponding function. This value can then be used in an expression. The shape 
of  blocks is always related to their use and is complementary to placeholders of  similar shapes 
that can accept such blocks.  

2.3.3 Variables and loops 

In programming, whenever we have to keep a value that we will later display or do some kind of  
mathematical operation with it, we have to place it in a reserved position in the computer’s 
memory. All programming languages facilitate memory storage of  values via variables. Variables 
are essentially human-readable names that correspond to certain memory positions. We can 
retrieve and store a value in a variable using its name. The term variable stems from the word vary 
which means that something changes, which in the case of  a variable is its contents. We can 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

16 

declare a variable in Python just by assigning a value to it and afterward in the code we can 
increase, decrease or reassign a new value to this variable. Below we declare a variable named 
my_first_variable and we assign the value 6 to it using the = operator. 

my_first_variable = 6 

 

Now we can, for example, increase its value by 2. This is done by using the increase operator 
which is noted as +=. By doing so, we increase the previously saved value of  the variable named 
my_first_variable which was 6, by adding 2 and we save the result again in the same variable. 
From now on when we use the variable my_fist_variable in our code, its value will be 8. 

my_first_variable += 2 
 

To access a variable’s contents, we have to use the oval block with the variable’s name in it, as 
shown below. As we saw earlier, this oval shape corresponds to blocks that produce a certain 
value and can be used to build complex expressions using operators such as the arithmetical 
operators for addition, subtraction, multiplication, and division. Let us see how: In the code 
below, we declare two variables named a and b and assign to them the values 4 and 3 respectively. 
Then we add a + b and assign the sum to a new variable named c. We observe the difference 
between the blocks that assign a value to a variable and those that read the value of  a variable. 

a = 4 
b = 3 
c = a + b 

 

Sometimes in our code we want to repeat a set of  instructions. We can do so using a while loop as 
shown below: 

while True: 

 

Whatever statements we put inside such a block will be repeated forever because we have used 
the keyword True as the condition of  the loop. If  we replace True with another condition, we 
could repeat the loop as long as the condition is True. For example, we will see how we can use a 
condition to execute a while loop as long as a certain button is not pressed. 

To indicate that a while loop does not do anything while it repeats itself, we put inside it the 
statement pass as shown below. Such a while loops is useful when we want to stall our code 
execution until an event happens, for example, a button is pressed. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

17 

while True: 
   pass 

 

Instead of  the pass statement, in a while loop that does not do anything while it repeats, the 
continue statement can be used. 

Note that in text-based code, all statements within a loop should be indented with one tab 
character. 

2.3.4 Data types 

Any value produced by an oval block has a data type. The most common data types that we will 
use are:  

 Strings are sequences of  characters. Double quotes or single quotes can be used for 
defining them: "a12", 'nick'. "" (or ‘’) is the empty string, a string with zero characters. 
Any letter, number, or symbol character can be used in a string. 

 Integers are numeric values, positive or negative, such as 12, -1, 0, and -34. You can 
combine integer values to create complex arithmetic expressions using the familiar 
operators of  addition (+), subtraction (-), multiplication (*), division (/) as well as the 
remainder (%) operator to compute the remainder of  the division between two integers. 

 Floating point numbers, positive or negative, such as 3.14, -19.0, 0.0, and -34.4533. You 
can combine floating-point numbers the same way as integers using arithmetic operations. 
You can also compute the closest integer part of  a floating-point number x using int(x).  
For example, int(3.2) and int(3.9) will both give the value 3. 

 Booleans are two special values - True and False - that represent if  something is valid 
(true) or invalid (false). More about this type of  value will be presented in subsequent 
activities.   

2.3.5 Micro:bit LED screen 

The micro:bit has an LED screen that consists of  an array of  5 x 5 LEDs. It can be used to show 
lots of  interesting stuff. If  we want to display a single character (letter, number, or symbol) we 
use display.show(). Between the parentheses, we give as a string the character we want to display. 

display.show("K") 

 

 

If  we execute again display.show() for a different character, the display first clears itself  and then 
shows the new character. In the case that we want to clear the screen manually, we use the 
display.clear() without passing any parameter. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

18 

display.clear() 

 

If  we want to display more than one character, for example, the word Hello!, display.show() will 
display one character at a time which is not always what we want. That is why there is 
display.scroll() which scrolls the text we give between the parentheses.  

display.scroll("Hello!") 

 

In EduBlocks there are two options, one using quotes "..." which is used for strings, and one 
without which is used for numbers. 

Lastly, we can manipulate each pixel of  the screen individually. That means we can pick an 
intensity level from 0 to 9 for any pixel we want, with the 0 being off  and 9 as the brightest 
setting. To do so we use the display.set_pixel(). Below is an example for setting the center-most 
pixel to full intensity. The first parameter is the x position, the second one is the y position and 
the third one is the intensity. 

display.set_pixel(2, 2, 9) 

 

The index for the x, y coordinates of  the center pixel is 2, 2 instead of  3, 3 because the counting 
of  the elements in the array along each row and column starts at index 0. We start counting from 
the upper left corner of  the screen that corresponds to coordinates 0, 0. 

2.3.6 Micro:bit buttons 

The micro:bit board is equipped with 2 buttons that are labeled A and B. We can use them to 
enable us to interact with a running program so that it is possible to control its behavior during 
its execution. There are two methods we can use for the buttons: The first one is the is_pressed() 
method which returns True when the button is currently being pressed. To use it, we first select 
the name of  the button we want to check, as shown below: 

button_a.is_pressed() 

 
button_b.is_pressed() 

 

 

The other method is was_pressed() which returns True if  the button was pressed from the time 
we powered on the micro:bit, or from the last time, we called was_pressed(), whichever is most 
recent. 

button_a.was_pressed() 

 
button_b.was_pressed()  



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

19 

 

2.4 Practice 

As it is described in the Synopsis, the game of  this section starts with a countdown from 3 to 0. 
This is the first thing that we are going to implement in code. The first statement in our code 
should import the microbit library so that we could use its functions and objects: 

from microbit import * 

 

The above statement, when executed, will pre-load every function or object that is included in the 
microbit library. This is an absolutely necessary statement in our code. Without it most of  the 
functionalities of  micro:bit could not be used, and therefore our game will not work. 

Now that we imported everything we need, we can start coding the countdown. The numbers 
will be shown on the micro:bit’s display. To do so we will use display.show(): 

display.show() 

 

This allows us to show on the display, whatever value we put between the parentheses. In our 
code, we will put the numbers of  the countdown. Below is the code needed to display the 
numbers 3 and 2. Extend this code and make the appropriate additions in order to display the 
numbers from 3 to 0. Upload the final code to the micro:bit. 

from microbit import * 
 
display.show(3) 
display.show(2) 

 

We observe that after some flashing, the display shows only the last number of  our countdown. 
This happens because all the numbers are displayed one after the other so fast that our eyes 
cannot perceive them. To address this problem, we can put a small delay before presenting every 
number. This is done with the sleep(). In the parentheses, we put the amount of  time we want 
our code to be delayed in milliseconds, which in our case will be 1 second or 1000 milliseconds. 
Below is the final code with delays, which you can further elaborate on by adding the necessary 
statements to display numbers 1 and 0 after 3 and 2. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

20 

from microbit import * 
 
display.show(3) 
sleep(1000) 
display.show(2) 

 

Now that our countdown is working, we can implement the time measuring part. In order to 
calculate how many milliseconds elapsed between the number 0 is shown and the player pressing 
a button, we need two timestamps. We need to know at what time the number 0 was shown and 
at what time the player pressed any button. After we acquire these two time measurements, we 
subtract the first from the second: the result will be the time elapsed between the two events. For 
example, let us say that the number 0 was shown after 3000 milliseconds (from the micro:bit’s 
power-on) and the player responded by pressing a button at 3700 milliseconds. If  we subtract 
3000 from 3700 we are left with 700 milliseconds, which is the time elapsed. 

Now that we know what information we need, we can add to our code the following line. This 
line is placed right after the command that shows the number 0 on the display. It saves the time 
(in milliseconds) that elapsed from the last micro:bit’s power-on, to a variable named start which, 
as the name implies, is the start of  our time measurement. 

start = utime.ticks_us() 

 

In order to test that our time measurement concept works as we intend, we can try to measure a 
predefined period. To do so, we can put the micro:bit to sleep for 1 second and then take the 
second timestamp and save it to a variable named stop. After this is done, we can calculate the 
time that elapsed from start to stop, by subtracting the start from the stop and saving the result in 
a variable named time. Then we can show the result on the micro:bit’s display, using the 
command display.scroll(time) instead of  display.show(time) because the display can only fit one 
digit at a time. The code needed to perform this test is shown below and you can compare it to 
the code you wrote so far, in order to confirm that it is right. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

21 

from microbit import * 
 
display.show(3) 
sleep(1000) 
display.show(2) 
sleep(1000) 
display.show(1) 
sleep(1000) 
display.show(0) 
start = utime.ticks_us() 
sleep(1000) 
stop = utime.ticks_us() 
time = stop - start 
display.scroll(time) 

 

We observe that after the countdown is finished, a number scrolls on the display which is really 
close to 1000 and that indicates that our code measures the time from start to stop rather 
accurately.  

To complete our game, we have to replace the sleep(1000) statement with another one that stalls 
the execution of  code in that position until the player pushes a button. This can be done using a 
while loop, that loops without doing anything while there are no button presses registered. To 
indicate that a while loop does not do anything we put a pass statement inside it. After a button is 
pressed, we exit the while loop and the execution continues with the rest of  the code. 

Let us select button A for the user to press. The method is_pressed() returns True if  the Button 
is pressed or False if  it is not. We would like the while loop to continue iterating as long as the 
method returns False and stop iterating when it returns True. This corresponds to the logical 
negation of  the return value of  the method. To compute the negation of  a logical value we use 
the not operator. We will see more logical operators in the next learning activity. For now, it is 
sufficient to know how the not operator works and how to use it in our code. The finished code 
is given below and you can download it to your micro:bit in order to play the game 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

22 

from microbit import * 
import utime 
display.show(3) 
sleep(1000) 
display.show(2) 
sleep(1000) 
display.show(1) 
sleep(1000) 
display.show(0) 
start = running_time() 
while not button_a.is_pressed(): 
    pass 
stop = running_time() 
time = stop - start 
display.scroll(time) 

 

2.5 Time for fun 

Here are some ideas for extending the game: 

1. The game in its current state is executed only once. You can surround the whole code 
with a while True loop to execute the game indefinitely. 

2. Revise the previous extension so that the game ends when the player presses button B. 

3. Revise the game so that after the countdown the player has to press button A 5 times. 

4. You can easily see that the countdown part of  the code essentially repeats 3 times the 
process of  presenting a number and sleeping for 1 second before it finishes to 0. Could you 
replace this part of  the code with an appropriate while loop that counts down using a new variable 
to gradually reduce this variable and display its value on the LED matrix? This way your code is 
much more elegant and modular. You can then very easily change the initial value of  the 
countdown from 3 to any number you desire. 

5. You can use your micro:bit to measure the temperature or the light intensity of  your 
environment. Try to download and run the following code on your micro:bit. It will display on 
the LED matrix the current temperature and light intensity: 

from microbit import * 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

23 

 
display.show(temperature()) 
display.clear() 
display.show(display.read_light_level()) 
display.clear() 

 

You can use temperature() and display.read_light_level() in many different creative ways to 
make your game more interesting. For example, you may use the current temperature as 
the initial value of  the countdown variable in the previous extension. Or you could use 
the light intensity to compute the delay (sleep time) between the steps in the countdown 
in combination with arithmetic operators. For example, a sleep time of  
100000/display.read_light_level() will cause a slower countdown in a darker environment. 

2.6 Self  check 

1. While loops are executed while their condition is: 

a. True  

b. False  

c. True or False  

d. They are executed only once 

2.  Between the parentheses of  sleep(), we put the amount of  time in: 

a. Seconds 

b. Microseconds 

c. Milliseconds 

d. Hours 

3. The correct way to measure the time passed from start to stop is to: 

a. Subtract stop from start 

b. Add start and stop 

c. Divide stop with start 

d. Subtract start from stop 

4. To display a number or text that is bigger than the screen can show we use: 

a. display.show()  



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

24 

b. display.show() for each character 

c. display.scroll()  

d. display.showAll()  

5. To include everything from a library into our code we use: 

a. from libraryName import everything  

b. from libraryName import *  

c. from libraryName import all  

d. import all from libraryName  

6. To get how many milliseconds the micro:bit is running since its last power-on we 
call: 

a. running_time() 

b. up_time() 

c. executing_time() 

d. on_time() 

7. display.show() is used to show on the display of  micro:bit: 

a. Letters 

b. Numbers 

c. Images 

d. All of  the above 

8. To invert a condition we use: 

a. The keyword invert in front of  it 

b. The keyword invert after it 

c. The keyword no in front of  it 

d. The keyword not in front of  it 

9. The instructions that are meant to be part of  a loop should be:  

a. Put inside brackets { } 

b. Indented with a tab 

c. Put inside parentheses ( ) 

d. None of  the above 

10. To indicate that a loop does not perform any task, we put in its body: 

a. The control statement continue  

b. The control statement pass  

c. The control statement break  

d. The control statement continue or pass   



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

25 

3. Fill the screen - Wireless communication among micro:bit boards 

 
3.1  Aim 

The aim of  this activity is to get more in-depth knowledge of  Python. We will learn some new 
useful functions, data types, and control statements. We will also learn about wireless 
communication in the micro:bit and we will create our own function. Our coding project will be a 
multiplayer board game that we can upload to the micro:bit to play with our friends. 

3.2 Synopsis 

The aim of  the game is to compete with other players, each one using his/her micro:bit, to light 
up the whole display by turning on one pixel at a time. The first player to light up his/her whole 
display wins. Each player has to tilt the micro:bit in order to move a bright red indicator and 
select the pixel he/she wants to turn on by pressing the button A. The pixels that have been 
already turned on are indicated by a low-intensity red light. The player that is the first to fill the 
whole display wins and his micro:bit transmits the message “I WON” to the other boards. The 
winner’s display shows the letter W and every other player’s display shows L, indicating that they 
lost this round. 

3.3 Theory 

3.3.1 Making choices in Python 

There are cases when our programs need to take certain actions depending on certain conditions 
related to the value of  a variable, the state of  a sensor, and many more. In such a case our code 
will check if  the corresponding condition is True or False and will decide what to do next 
depending on the result. There are two Python statements that can be used to make choices: The 
if statement and the while statement. We have already seen the while statement. Let us see now the 
if statement. 

Let us assume we have a game that asks for the user to give an answer to a question and the 
player has the possibility to give 3 wrong answers at most before he loses. We can store the 
number of  wrong answers in a variable and using the if statement we can check to see if  the 
number of  wrong answers is three, in which case we stop the game. The code that is inside an if 
statement is executed only when a certain condition is True. 

Let us see now another example of  using the if statement to control the behavior of  micro:bit 
depending on the input from a button. We want the micro:bit to scroll on the display the word 
“Hello!” each time we press the button A. In a while True loop, we put an if statement which 
checks if  the button A was pressed and in that case scrolls the word “Hello!”. Try the code 
below: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

26 

from microbit import * 
while True: 
   if button_a.was_pressed(): 
      display.scroll("Hello!") 

 

  

How does this code work? It constantly checks if  button A is pressed. If  it is not, the while True 
loop will continue. If  button A is indeed pressed, the display.scroll("Hello!") statement will be 
executed and after that the while True loop will continue again. 

An if statement can be extended using an else statement which is executed when the condition of  
the if statement is false. Let’s add an else statement to the previous code so that when button A is 
not pressed, the letter A is shown on the display to remind the player what button to press. 

from microbit import * 
while True: 
   if button_a.was_pressed(): 
      display.scroll("Hello!") 
   else: 
      display.show("A") 

 

The if statement can be further extended with one or more elif statements. Let us assume that we 
want to create a program specifying the age group of  a person using his/her age. The age to age 
group correspondence we want is the following: 

● age below 3: baby 

● age 3 or above and below 12: kid 

● age 12 or above and below 18: teenager 

● age 18 or above: grown up 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

27 

The code below shows how this processing is done using the if, elif and else statements. The 
person’s age is stored in the age variable and the age group in the age_group variable. It is 
interesting to study how this code actually works. The first statement checks if  the value of  the 
age variable is less than 3 and, if  it is, it assigns the value "baby" to the age_group variable and 
the code terminates.  

If  the value of  the age variable is 3 or more, the condition of  the initial if statement is False, and 
the first elif statement is executed. In other words, when the first elif statement is executed, the 
value of  the age variable is guaranteed to be 3 or more. Then the condition age<12 is checked. If  
this is True, it means that the value of  the age variable is 3 or above (due to the condition of  the 
initial if statement) and below 12. In that case, the value "kid" is assigned to the age_group 
variable and the code terminates.  

If  the value of  the age variable is 12 or more, the condition of  the first elif statement is False, and 
the second elif statement is executed. In other words, when the second elif statement is executed, 
the value of  the age variable is guaranteed to be 12 or more. Then, the condition age<18 is 
checked. If  this is True, it means that the value of  the age variable is 12 or above (due to the 
conditions checked in initial if and first elif statements) and below 18. In that case, the value 
"teenager" is assigned to the age_group variable and the code terminates.  

If  the value of  the age variable is 18 or more, the condition of  the second elif statement is also 
False, and the final else statement is executed. In other words, when the else statement is executed, 
the value of  the age variable is guaranteed to be 18 or more. In that case, the value "grown up" is 
assigned to the age_group variable and the code terminates.  

if age < 3: 
   age_group = "baby" 
elif age < 12: 
   age_group = "kid" 
elif age < 18: 
   age_group = "teenager" 
else: 
   age_group = "grown up" 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

28 

3.3.2 Logical expressions in Python 

Both if statements and while statements rely on logical expressions. Let us see how these 
expressions are structured. Simple logical expressions can be variables that have a Boolean type 
value, i.e., True or False. Furthermore, they could be comparisons of  arithmetic values using the 
comparison operators <, <=, ==, >=, >, or != for testing the relationship between two 
numbers. The following table presents the details. 

Operator Description Example 

== 
It evaluates to True if  the values of  two operands are 
equal. 

(1 == 2) is False 

(3 == 3) is True 

(3 == 2) is False 

!= 
It evaluates to True if  the values of  two operands are 
not equal. 

(1 != 2) is True 

(3 != 3) is False 

(3 != 2) is True 

< 
It evaluates to True if  the value of  the left operand is 
less than the value of  the right operand. 

(1 < 2) is True 

(3 < 3) is False 

(3 < 2) is False 

<= 
It evaluates to True if  the value of  the left operand is 
less than or equal to the value of  the right operand. 

(1 <= 2) is True 

(3 <= 3) is True 

(3 <= 2) is False 

> 
It evaluates to True if  the value of  the left operand is 
greater than the value of  the right operand. 

(1 > 2) is False 

(3 > 3) is False 

(3 > 2) is True 

>= 
It evaluates to True if  the value of  the left operand is 
greater than or equal to the value of  the right operand. 

(1 >= 2) is False 

(3 >= 3) is True 

(3 >= 2) is True 

 

The examples shown in the table above use arithmetic values. However, comparisons can be used 
between values of  other data types as well. For example, strings can be compared also using their 
lexicographic ordering. Here are some examples: 

"George" > "Geography" is True 

"George" < "Gorge" is True 

"George" != "Geography" is True 

Logical expressions can be combined into more complex ones using Boolean operators. The 
following table presents them in detail: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

29 

Operator Description Example 

not p 
It evaluates to True if  p is False and False if  
p is True. 

(not 1 < 2) is False 

(not 2 >= 3) is True 

p and q 
It evaluates to True if  both p and q are True. 
False otherwise. 

(1 != 2 and 3 == 3) is True 

(3 != 3 and 1 < 2) is False 

p or q 
It evaluates to True if  p or q is True. False 
otherwise. 

(1 != 2 or 3 < 2) is True 

(3 != 3 or 3 < 2) is False 

 

The meaning of  the Boolean operators not, and, or can be further explained using the so-called 
truth tables. A truth table gives the result value when applying a Boolean operator depending on 
the values of  its operands. All possible combinations of  values are included in such tables: 

A B A and B A or B not A 

True True True True False 

True False False True False 

False True False True True 

False False False False True 

 

It is evident from the above table that the and operator is True only when both its two operands 
are True, and it is False in all other cases. The or operator is True when any of  its two operands is 
True, and it is False when both of  them are False. The not operator takes only one operand and 
inverses its value: If  the operand value is True, it becomes False and vice versa. 

An example of  the application of  the and operator in real life would be the existence of  a 
rainbow. In order to have a rainbow we must have both rain and sun, in the absence of  any of  
them or both no rainbow can be seen.  

An example of  the use for the or operator in real life would be the decision to take an umbrella 
with us. We take an umbrella with us when either if  the forecast shows rain in our area or when it 
is actually raining right now. In the case that there is no rain right now and the forecast shows a 
sunny day we don’t take an umbrella with us.  

Finally, an example of  the use of  the not operator in real life is a photo sensor that turns on or 
off  the lights of  our house depending on the existence of  light outside the house. When there is 
light outside, the inside lights are off  and when there is no light outside, the inside lights are on. 

To summarize, a logical expression in Python consists of  one or more logical or comparison 
operators and true or false statements. We use these expressions in if statements or in while loops.  

3.3.3 Functions in Python 

Functions are an important construct that helps us better organize code in Python. Functions 
also help in reusing code fragments, thus making the programmer’s work easier and more 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

30 

efficient. We have already used several functions until now. Let us see, then, how to create our 
own functions. 

Functions are essentially fragments of  code that can be called and that usually return some results 
after they finish their execution. They can also affect the status of  a program or change the state 
of  electronic elements that are connected to the computer. This is the way that we will use them 
in this lab activity.  

To define a function in Python, we used the def keyword. We provide a name for the function and 
a list of  parameters inside parentheses. The list of  parameters may be empty if  we want to. In 
such a case the function will not receive any input when it is called. The code of  the function 
follows indented with one tab character. To return a value from a function and terminate its 
execution we use the keyword return along with the value or an expression that computes a value 
to be returned. 

As you already know, to call a function, just type its name and put in parentheses a list with the 
values for the function parameters. If  the function does not accept any parameter, put nothing 
inside the parentheses.  

3.3.4 Images 

To control the LED display of  the micro:bit we need to use a special class named Image. We have 
not yet seen classes in Python but for the moment we can consider them as special data types, 
just like strings, integers, and Booleans. What the Image class does is to provide a mechanism that 
we can use to hold a 5x5 array of  numbers from 0 to 9 which correspond to each pixel of  the 
display and indicate its respective intensity. We can use Images to prepare something that we want 
to display or to hold the state of  a game that is played on the screen. To create an Image, we 
should create an instance of  the Image class using a string of  25 numbers grouped in five rows 
separated by colons ‘:’ (more about classes and instances will be explained in following learning 
activities). Below we create an empty Image and assign it to a variable named empty_image. 

empty_image = Image("00000:00000:00000:00000:00000") 

 

We can edit the Image using set_pixel(). It takes the same arguments as display.set_pixel(), which 
are x position, y position, and intensity value. Also, we can get the intensity value of  a pixel of  an 
Image using get_pixel() with the x and y position of  the pixel as arguments. Lastly, we can fill an 
entire Image with the same intensity using fill() and the intensity value as an argument. 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

31 

3.3.5 Radio 

The micro:bit has an onboard radio antenna that can be used to communicate with other 
micro:bit boards. We can enable this feature by including the radio library and executing 
radio.on() in our code. radio.off() turns it off. 

radio.on() 

 

To send data we use radio.send(message) where the message is a string like “Hello!”. To receive 
data, we use radio.receive() and assign the value to a variable. In the case that there was no 
message transmitted, the radio.receive() will return the special value None. 

radio.send("Hello!") 

 

 
received_message = radio.receive() 

 

 

Usually, when we wait for a response and we want our program to pause until the response is 
received, we use a technique called polling: Checking the value of  the received_message repeatedly 
until the desired message appears. The following code demonstrates this process: 

received_message = radio.receive() 
while received_message == None: 
   received_message = radio.receive() 

 

 3.3.6 Accelerometer 

Another very useful component of  micro:bit is the built-in accelerometer. This component can 
detect the orientation of  the board in the hyperplane (3D plane), meaning that it can fairly 
accurately assert the orientation on the axes of  Pitch, Roll, and Yaw. The following two pictures 
demonstrate the position of  the axes on the micro:bit, together with an example of  an airplane 
so that the significance of  each axis is clear. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

32 

 

In the instruction set of  EduBlocks, the Roll axis is indicated with the letter x, the Pitch axis with 
the letter y, and the Yaw axis with the letter z. When we roll the board to the right the value of  x 
is positive and if  we roll it to the left it becomes negative. In the same way, when we pitch the 
board backward the value of  y is positive and if  we pitch it forwards it becomes negative. To 
acquire these values, we use accelerometer.get_x(), accelerometer.get_y() and 
accelerometer.get_z() that can be found in the Accelerometer category. 

 

The accelerometer can also detect some gestures by using accelerometer.was_gesture() and 
accelerometer.is_gesture(). 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

33 

3.4 Practice 

Let us begin our code by first importing the libraries that we will use, which are the microbit and 
radio libraries, as shown below. 

from microbit import * 
import radio 

 

Then we have to create an Image variable that will hold the current state of  the game and will be 
used to display the players’ progress on the micro:bit LED matrix. We initialize the Image with 
zeros so that when we display it every pixel will be turned off. 

image = Image("00000:00000:00000:00000:00000") 

 

Now it is about time we created our first function! It will be a function that will be responsible 
for the selection of  a single-pixel on the display by tilting the micro:bit. We declare it as shown 
below and we name it fillPixel.  

def fill_pixel(): 

 

First, in the function’s body, we declare two variables x and y, which will hold the coordinates of  
the pixel to be selected. Both of  these variables will be initialized to 0. This will set the position 
of  the indicator of  the pixel to be selected at the upper-left corner of  the display. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

34 

def fill_pixel(): 
 x = 0 
 y = 0 

 

The next thing we have to do is to repeat the pixel selection code until the player presses the 
button A. To do so, we will use a while loop. This loop will just check when button A will be 
pressed. To create such a condition, we put the button_a.was_pressed() method call inside a not 
operator. These will force the while loop to continue execution until the button A is actually 
pressed. 

def fill_pixel(): 
 x = 0 
 y = 0 
 while not button_a.was_pressed(): 

 

Inside the while loop’s body, we check the orientation of  the micro:bit board using its onboard 
accelerometer. Using the x and y orientation we can determine if  the board was tilted in the Roll 
or Pitch axes respectively. When we roll the board to the right the value of  x is positive and if  we 
roll it to the left it becomes negative. In the same way, when we pitch the board backward the 
value of  y is positive and if  we pitch it forwards it becomes negative. 

We also have to account for the position of  the indicator, using the x and y variables we declared 
above. For example, if  the indicator is at the topmost of  the display and we continue to pitch the 
board forwards we don’t want to change the value of  y anymore. 

Considering all of  the above we create one if-elif statement to control the movement along the 
Pitch axis and one if-elif statement to control the movement along the Roll axis. In the condition 
of  the if statement we check if  the board is rolled more than 200 units to the right and if  the 
indicator hasn’t reached the rightmost of  the display (meaning x<4). If  the condition is True, we 
increase the value of  x by 1. If  the previous condition is False, the elif statement is executed. The 
new condition checks if  the board is rolled less than -200 units to the left and if  the indicator 
hasn’t reached the left most of  the display (meaning x>0). If  this condition is True, we decrease 
the value of  x by 1.  

if accelerometer.get_x() > 200 and x < 4: 
   x += 1 
elif accelerometer.get_x() < -200 and x > 0: 
   x -= 1 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

35 

 

We follow the same steps for the second set of  if and elif statements which will be responsible for 
the pitch axis and the y position of  the indicator. 

After we assign the new position of  the indicator to the variables x and y, we have to show it on 
the micro:bit LED matrix. Also, we have to show the player’s progress that is kept in the image 
variable. Then, we set the pixel of  the indicator to the maximum intensity which is the value 9. 

display.show(image) 
display.set_pixel(x,y,int(9)) 

 

The last thing we have to do in the body of  the while loop is to introduce a delay. This is essential 
because the repetition occurs so fast that it is practically impossible to control the position of  the 
indicator. A delay of  200 milliseconds is adequate. 

sleep(200) 

 

To complete our function we have to update our progress that is saved in the image variable 
every time the player selects a new pixel by pressing the button A. When the player pressed this 
button the execution of  the while loop stops and the execution continues to the next blocks of  
code. To update the image, we have to use a function block to call image.set_pixel(). For the 
arguments, we give the values x and y of  the indicator and the intensity of  the light as 6. We set 
the intensity as 6 because otherwise, the indicator will not differentiate from the other pixels. 

def fill_pixel(): 
 x = 0 
 y = 0 
 while not button_a.was_pressed(): 
  if accelerometer.get_x() > 200 and x < 4: 
   x += 1 
  elif accelerometer.get_x() < -200 and x > 0: 
   x -= 1 
  if accelerometer.get_y() > 200 and y < 4: 
   y += 1 
  elif accelerometer.get_y() < -200 and y > 0: 
   y -= 1 
  display.show(image) 
  display.set_pixel(x,y,int(9)) 
  sleep(200) 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

36 

 image.set_pixel(x,y,int(6)) 

 

Now that we created our new function, we can test its functionality by calling it using the 
function call block with our function’s name in it.  

fillPixel() 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

37 

Load the code to the micro:bit and try to fill some pixels. What do you observe? 

You should be able to observe that we can only fill one pixel and after that, the game is not 
responding. This happens because we only call our function once and after it finishes the 
program ends. To resolve this problem, we can put the function call in a while True loop as shown 
next: 

while True: 
   fill_pixel() 

 

Try loading the game now and fill the whole display. What do you observe? 

You should be able to observe two things, one is that the indicator always returns to the upper 
left corner after each round and the other is that the game never stops, even after the whole 
display is filled. To solve this problem, we have to modify the condition of  the while loop in order 
to stop either when the whole display is filled or when another player has done so (remember 
that this game is to be played by a number of  players with their micro:bits communicating with 
each other). 

To be able to stop the game when another player has filled the display in his/her micro:bit, it is 
necessary to extend our code so that the micro:bit boards used by the players can communicate 
with each other. To do so, we first turn the radio communication on and save to a variable the 
result the radio.receive(). If  the result is empty, the value None is saved to our variable. This is the 
code we can use: 

radio.on() 
incoming = radio.receive() 

 

The while loop should continue executing while no other player has filled the whole display, i.e., 
while the value of  the variable incoming is None. We also check using the Boolean and operator 
that we have not filled our own display, which can be determined by checking for the presence of  
zeros in the image. This is checked with the condition "0" in str(image). The str(image) 
transforms the image contents into a string and then we use the in operator to check if  the 
character representing zero is contained in the string. The code now is as follows: 

while incoming == None and "0" in str(image): 
 fill_pixel() 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

38 

 

In the body of  the while loop we already call the function, we created but we have to add one last 
thing. That is, to update the contents of  the incoming variable by calling again radio.receive(). 
This is important in order to know if  any other player will finish before us during the next game 
round. This is the final code: 

while incoming == None and "0" in str(image): 
 fill_pixel() 
 incoming = radio.receive() 

 

In the case that either we filled our display or another player has done so, the while loop 
terminates and the rest of  the code is executed. By checking to find what caused the while loop to 
terminate, our code can determine if  the player has won or lost via an if  else statement to check 
the value of  the incoming variable. If  the variable has the value None, that means that the player 
has won, the code transmits an "I WON" message to the other micro:bit boards and displays the 
character W on the LED matrix. If  the value of  the incoming variable is not None, another 
player has won and his/her micro:bit has transmitted an "I WON" message, so the player loses 
and the code displays the character L on the LED matrix.  

The full code of  the final version of  the game is presented next both in the text-based and 
blocks-based form: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

39 

from microbit import * 
import radio 
image = Image("00000:00000:00000:00000:00000") 
def fill_pixel(): 
 x = 0 
 y = 0 
 while not button_a.was_pressed(): 
  if accelerometer.get_x() > 200 and x < 4: 
   x += 1 
  elif accelerometer.get_x() < -200 and x > 0: 
   x -= 1 
  if accelerometer.get_y() > 200 and y < 4: 
   y += 1 
  elif accelerometer.get_y() < -200 and y > 0: 
   y -= 1 
  display.show(image) 
  display.set_pixel(x,y,int(9)) 
  sleep(200) 
 image.set_pixel(x,y,int(6)) 
radio.on() 
incoming = radio.receive() 
while incoming == None and "0" in str(image): 
 fill_pixel() 
 incoming = radio.receive() 
if incoming == None: 
 radio.send("I WON") 
 display.show('W') 
else: 
 display.show('L') 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

40 

 

 
 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

41 

3.5 Time for fun 

Here are some ideas for extending the game developed so far: 

1. To make the game more interesting, revise the code so that if  the player selects a pixel that is 
already selected, it is deselected. 

2. Another approach is to start with a certain image in the LED matrix that the player has to 
delete (make all pixels zero) in order to win. Start from the previous extension and develop 
this one. 

3. As a final extension, you can start with an empty image, present a desired image to the player 
and then check when the player has created the desired image. In this case, the player has to 
remember the desired image in order to create it. 

3.6 Self  check 

1. A logical expression may contain: 

a. Logical operators 

b. Comparison operators 

c. True or False statements 

d. All of  the above 

2. The logical expression A or B is True when: 

a. Both A and B are True 

b. A or B is True 

c. Both A and B are False 

d. It is always True 

3. Select the correct operator to make the statement "George" ___ "Geography" 
True: 

a. >  

b. >=  

c. !=  

d. All of  the above 

4. When we call radio.receive() and nothing is sent, the return value: 

a. None  

b. Nothing  

c. ""  

d. Empty  

5. The logical expression A and B is True when: 

a. Both A and B are True 

b. Either A or B are True 

c. Both A and B are False 

d. It is always True 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

42 

6. Select the correct operator to make the statement 1 ___ 4 True: 

a. >  

b. ==  

c. <  

d. All of  the above 

7. An if statement can consist of: 

a. Only one if statement 

b. Multiple elif statements 

c. Only one else statement 

d. Exactly one if statement, none or many elif statements, and none or exactly 
one else statement 

8. The x and y values of  the accelerometer are for the: 

a. Pitch and Roll axis respectively 

b. Roll and Pitch axis respectively 

c. Yaw and pitch axis respectively 

d. Roll and Yaw axis respectively 

9. The accelerometer can detect: 

a. The North Pole 

b. The South Pole 

c. The rotation of  the micro:bit 

d. None of  the above 

10. Through the radio capability of  the micro:bit we can only transmit: 

a. Strings 

b. Numbers 

c. Images 

d. Anything, if  we have first converted it to a string 

 

  



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

43 

4. Battleship - Deepen Your Knowledge about Python and Micro:Bit 

 
4.1 Aim 

The aim of  this learning activity is to go more in-depth in Python and learn some new useful 
coding techniques to make our code more elegant and effective. Our coding project will be a 2-
player game, a simplified version of  the famous Battleship game.  

4.2 Synopsis 

Battleship is a strategy-type guessing game for two players. It is played on ruled grids (paper or 
board) on which each player's ships are marked. The locations of  each player’s ships are 
concealed from the other player. Players alternate turns calling "shots" at the other player's ships, 
and the objective of  the game is to destroy the opposing player's fleet. An example of  a game 
state is shown below where the position of  ships is shown with grey rectangles and the shots of  
the other player are shown with X symbols. A grey rectangle with all its cells marked with Xs is 
essentially a sunk ship. A grey with some, but not all, rectangles with Xs is hit but not sunk yet.  
The game ends when all ships of  a player are sunk. 

 

In our version of  the game, the players will have 3 ships, 2 that are 2 cells long and 1 that is 3 
cells long. The position of  each ship is specified in the code. The player selects the position to 
shoot by tilting the micro:bit, which moves a red dot indicator, and then pressing the button A. 
To differentiate the multiple states of  ships and shoots the corresponding pixels in the LED 
matrix appear in different color intensities. On the ships’ board, the ships are marked as bright 
red and the parts that are shot are marked as dim red. In the shot’s board, the hits are marked as 
bright red and the misses are marked as dim red. 

4.3 Theory 

4.3.1 Global vs Local variables 

In programming the variables are categorized as global or local depending on their scope. The 
scope refers to the visibility of  a variable, meaning which parts of  our program are aware of  the 
variable and can use it. Usually, the variables we declare in our main program have a global scope. 
In the case that we declare a variable inside a function’s body, we cannot have access to that 
variable outside the function. Let’s take for example the following code snippet. You can try it in 
Python 3 mode of  EduBlocks: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

44 

def myfunc(): 
   x = 300 
   print(x) 
 
myfunc() 

 

In this example we declare the x variable inside the function and we use it again inside the same 
function to print its value. Then we call the function and we see that it runs without any 
problems. Now let’s try to print the value of  x again after calling myfunc(). 

def myfunc(): 
   x = 300 
   print(x) 
 
myfunc() 
print(x) #error 

 

We see that if  we try to run this code snippet, we get an error in the last line saying that x is not 
defined. This is due to the fact that x is declared inside the function’s body and therefore its 
scope is local and cannot be accessed outside myfunc. 

Let’s see how we can use global variables. At the top of  the program below, we declare the 
variable x and assign the value 300 to it. Now the scope of  the variable is global and every part 
of  our code has access to it. 

x = 300 
 
def myfunc(): 
  print(x) 
 
myfunc() 
print(x) 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

45 

 

If  we run the above program (Python 3 mode of  Edublocks) we see the value 300 printed two 
times in our console without any errors. We have to be very careful with global variables, 
especially in large programs since their value can easily be changed from anywhere on the code 
and we may find it difficult to troubleshoot our code in the case of  unwanted behavior. 

In MicroPython, which we use for our micro:bit projects, in order to access a global variable, we 
have to specify that it is global before we use it inside a function. In order for the above example 
to work in MicroPython, it has to be modified as shown below. 

x = 300 
def myfunc(): 
 global x 
 print(x) 
myfunc() 
print(x) 

 

4.3.2 String manipulation 

In programming there are some cases where we will have to know a string’s length or even use 
only a part of  it. To do that we do what’s called string manipulation.  

One important string manipulation operation is to find the length of  a string s, meaning how 
many characters there are inside it. This is done using len(s). If  we take for example the following 
code snippet (using Python 3 mode in EduBlocks), we get as output the value 6.  

text = "Hello!" 
length = len(text) 
print(length) 

 

Another useful operation is to take a part of  a string. To do so we perform the so-called string 
slicing. String slicing uses the indexes of  the characters in a string. The first character of  a string is 
in index 0, the second is in index 1, and so on. To take a character of  a string s at index a we use 
s[a]. The snippet below shows how to do exactly that and the result is the letter "o" (using Python 
3 mode in Edublocks). 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

46 

text = "Hello!" 
part = text[4] 
print(part) 

 

To take the part of  a string s starting at index start and ending just before index stop, we use 
s[start:stop]. Run the following code using Python 3 mode in EduBlocks. What output do you see 
in the console? 

text = "Hello!" 
part = text[1:4] 
print(part) 

 

You should be able to see "ell" as output. The first thing to note here is that we start counting 
from 0, therefore in position 1 is the letter "e" and not "H". The number 4 at the end of  the 
slicing statement represents the fifth character of  "Hello", i.e. "o". However, this character is not 
part of  the result, because in slicing the stop position of  the slice is one less than the 
corresponding number. So, the result will consist of  characters at indices 1, 2 and 3 (exclusive of  
4), which is "ell". 

In the case that we want to remove only the beginning of  the string, we can omit the indices after 
the start index and replace them with the colon ":". This way the slice will start at the start index 
and continue until the end of  the string. The following example will have as output the string 
"ello!" (using Python 3 mode in EduBlocks). 

text = "Hello!" 
part = text[1:] 
print(part) 

 

Another way to specify a slice is by omitting the start index and specifying the stop index. This 
way we can take a part of  a string that starts from the first character up the stop index. We can 
also use negative indices to specify an index relative to the end of  the string: -1 is the index of  
the last character of  a string, -2 is one character before the last one, etc. The following example 
will have as output the string "He" (using Python 3 mode in Edublocks). 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

47 

text = "Hello!" 
part = text[:-4] 
print(part) 

 

All of  the above string manipulation operations can be combined whenever necessary in order to 
get the desired output. 

4.3.3 Objects 

In Python, all functions, variables, numbers, and names are objects with their respective data 
attributes and methods. Specifically, objects are instances of  classes. We can think of  classes as 
prototypes for objects. They define a set of  attributes that characterize any object of  a certain 
class. The attributes can be data attributes or methods accessed via dot notation. In the following 
learning activities, we will see how we can create our own classes. 

4.3.4 Functions as objects 

Python functions can be used as objects. For example, if  we have two functions player1() and 
player2() we can call them alternately as shown below. This code will print forever "I’m player 1" 
and "I’m player 2" alternately. 

def player1(): 
 print("I'm player 1") 
 
def player2(): 
 print("I'm player 2") 
     
player = player1 
while True: 
  player() 
  player = player2 if player == player1 else player1 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

48 

The last line of  the above code uses the so-called ternary operator also known as conditional 
expression. This is an operator that evaluates something based on a condition being True or 
False. It simply allows testing a condition in a single line replacing the multiline if else statement 
making the code compact. Compare with the following code that is equivalent to this single line 
conditional expression: 

if player == player1: 
   player = player2 
else: 
   player = player1 

 

4.4 Practice 

To start coding our game we have to import the microbit and radio that provide all the 
functionality that we will need. We are now using the BBC micro:bit mode of  EduBlocks as 
usual: 

from microbit import * 
import radio 

 

Next, we must declare two Images, one that stores the placement of  our ships and one that 
stores the shots we have done, with an indication for each shot if  it was a hit or a miss. Here we 
also declare two variables that will store the x and y coordinates of  the selected hit point in each 
game round. Note that the variable ships, which stores the placement of  our ships, is initialized 
with a specific position of  the three ships. To change this position, the corresponding statement 
should be changed. 

ships = Image("00090:99090:00090:00000:00990") 
hits = Image("00000:00000:00000:00000:00000") 
pointx = 0 
pointy = 0 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

49 

 

The hit point selection function is identical to the one we used in the previous learning activity. In 
both cases, the micro:bit accelerometer is used to enable the player to select the hit point by 
tilting the micro:bit. An important difference is that the x and y coordinates are now global. Their 
names are pointx and pointy respectively. To be able to use them as global variables inside the hit 
point selection function, we have to use a global pointx, pointy statement inside this function. Yet 
another difference in our new hit point selection function is that when we press button A the 
function does not save our selection in the hits Image. It will save it after it is checked to find if  it 
was a hit or a miss. The full code of  the hit point selection function is as follows: 

def select_hit_point(): 
 global pointx, pointy 
 while not button_a.was_pressed(): 
  if accelerometer.get_x() > 300 and pointx < 4: 
   pointx += 1 
  elif accelerometer.get_x() < -300 and pointx > 0: 
   pointx -= 1 
  if accelerometer.get_y() > 300 and pointy < 4: 
   pointy += 1 
  elif accelerometer.get_y() < -300 and pointy > 0: 
   pointy -= 1 
  display.show(hits) 
  display.set_pixel(pointx,pointy,int(9)) 
  sleep(200) 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

50 

 

 

This game has two modes that alternate between the players: the defender and the attacker. When 
one player is the attacker, the other has to be the defender, and vice versa. In order to better 
organize our code, we create two functions, one for each mode which we name defender() and 
attacker().  

Let’s begin with the attacker function. First, we specify that the variables pointx and pointy are 
global, the same way we did in the select_hit_point() function. After this statement, the code calls 
the select_hit_point() function in order for the attacker to select the next hit point. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

51 

def attacker(): 
      global pointx, pointy 
      select_hit_point() 

 

After the selection is complete, the x and y coordinates of  the hit point are stored in the variables 
pointx and pointy respectively. Then, these coordinates are transmitted to the other player’s 
micro:bit. To do so it is necessary to transform the arithmetic values of  the coordinates into a 
string because radio.send() works only with string argument. To do this conversion we use the 
str() function for each one of  the two coordinates and then combine the two using the + 
operator, which is the string concatenation operator. For example, if  we had the coordinates 5 
and 3 for pointx and pointy respectively we would compute str(5)+str(3) and the result would be 
the string "53". So, the statement that needs to be added in the attacker() function to send the 
message with the hit point to the defender is the following: 

radio.send(str(pointx)+str(pointy)) 

 

The defender has to process the received hit point and send an answer to the attacker whether it 
was a hit or a miss. In the meantime, the attacker should wait for the response. To do so we will 
create a function that waits for a response via radio.receive() and returns the data received. This is 
the function wait_for_response() that we describe next. 

As shown in the code below, in the wait_for_response() function we first save the data received 
from radio.receive() to a variable incoming and then we repeatedly check the contents of  this 
variable using a while loop. If  the variable has the value None it means we did not receive 
anything, so we read again the contents of  radio.receive(), save them in the incoming variable and 
continue with the same loop. When the incoming variable’s content is different from None, we 
know that we have received something and we return it. 

def wait_for_response(): 
 incoming = radio.receive() 
 while incoming == None: 
  incoming = radio.receive() 
 return incoming 

 

Using this new function, we can now continue with the attacker() function. The code we have 
developed so far enables the player to select the hit point, and send it to the other player’s 
micro:bit. Then we can use the wait_for_response() function so that the attacker can receive the 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

52 

defender’s response and learn if  the hit was successful or not. This is the code of  the attacker() 
function so far: 

def attacker(): 
 global pointx, pointy 
 selectHitPoint() 
 radio.send(str(pointx)+str(pointy)) 
 incoming = wait_for_response() 

 

Next, we need to check the contents of  the incoming variable if  it is "hit" or "miss". If  it is "hit" 
we mark this position in the Image hits with bright red (intensity 9); otherwise, we mark a miss 
with low intensity (3). The code that accomplishes this check and further processing is the 
following: 

if incoming == "hit": 
 hits.set_pixel(pointx,pointy,int(9)) 
elif incoming == "miss": 
 hits.set_pixel(pointx,pointy,int(3)) 

 

A last step is necessary in the attacker() function: to show the updated Image hits on the 
micro:bit’s LED matrix. The complete code including this last step is given below: 

def attacker(): 
 global pointx, pointy 
 selectHitPoint() 
 radio.send(str(pointx)+str(pointy)) 
 incoming = wait_for_response() 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

53 

 if incoming == "hit": 
  hits.set_pixel(pointx,pointy,int(9)) 
 elif incoming == "miss": 
  hits.set_pixel(pointx,pointy,int(3)) 

 display.show(hits) 

 

The defender’s function is complementary to the previous function to enable an appropriate 
interaction between the two players’ micro:bits: When the defender’s function is running on the 
micro:bit of  one player, on the micro:bit of  the other player the attacker’s function is running and 
vice versa, until the game ends. 

The defender() function begins by waiting for the selected hit point of  the attacker, using the 
wait_for_response() function we created above. After we receive the hit point, we have to check 
if  it points to a ship in the ships Image. Note here that the hit point is received as a string so we 
need to split the two coordinates and convert them to integers in order to use them for further 
processing. Further note that both coordinates are one digit long, so the message string will 
always be two characters long with the first character (at index 0) being the x coordinate and the 
second one (at index 1) being the y coordinate. So, the coordinates of  the hit point will be 
int(incoming[0]) for x and int(incoming[1]) for y. Using these values, we get the appropriate pixel 
of  the ships Image and check its intensity: if  it is 9, we have a hit, otherwise we have a miss. For 
each outcome, we send the appropriate message to the attacker. Furthermore, in the case of  a hit 
we have to change the intensity of  the respective pixel in the ships Image in order to inform the 
player that a ship was hit. The last step in the defender’s function is to display the new value of  
the ships Image on the LED matrix of  the micro:bit. The final code that implements all this 
processing is as follows: 

def defender(): 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

54 

 incoming = wait_for_response() 
 if ships.get_pixel(int(incoming[0]), int(incoming[1])) == 9: 
  radio.send("hit") 
  ships.set_pixel(int(incoming[0]), int(incoming[1]),3) 
 else: 
  radio.send("miss") 
 display.show(ships) 

 

At this point we have completed all the functions that we are going to use in our game. So, we 
can now go on with the main program. The first thing we have to do when the game starts is an 
initialization to determine who will be the attacker in the first round. To do so we create a 
variable named play in which we will save the function name which corresponds to the player’s 
current role. We begin with both players being defenders and wait for one of  them to press 
button A to become the attacker. As soon as one of  the players becomes the attacker, an 
"attacker" message is sent to the other player’s micro:bit. The reception of  this message makes it 
possible to exit the while loop of  the other player’s micro:bit code and start operating in the 
defender’s role. The complete code for this initialization process is shown below: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

55 

radio.on() 
incoming = radio.receive() 
while incoming == None: 
 incoming = radio.receive() 
 if button_a.was_pressed(): 
  radio.send("attacker") 
  play = attacker 
  break 

 

After the players have decided who the attacker is and who the defender is, the main game loop 
can start. This is a while True loop that alternates execution between the attacker() and the 
defender() functions for one player and between the defender() and the attacker() functions for 
the other player. In both cases, we call the play() function and then change the play variable to 
"attacker" if  the previous value was "defender" and to "defender" if  the previous value was 
"attacker". This is done using the techniques we have already seen in the theory of  this learning 
activity.  

Next, the code sleeps for 3 seconds in order for the players to read the Images that are shown on 
their screens, which are ships for the defender and hits for the attacker. The last thing is to check 
if  there are any remaining ships in the ships Images. The ships are indicated by the intensity 9 so 
if  there are no 9s in the Image ships then it means that all the ships of  this player are destroyed 
and the game is over. In this case, we break the while True loop to stop the execution of  our game 
and display the letter L on the screen to indicate that we lost. The final code is shown below and 
it is to be used just after the initialization code described above. 

while True: 
 play() 
 play = attacker if play==defender else defender 
 sleep(3000) 
 if not '9' in str(ships): 
  break 
 
display.show("L") 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

56 

 

4.5 Time for fun 

Here are some ideas for possible extensions of  the game we have developed so far: 

1. The game, as it is implemented, displays a message to the player that loses but does not 
display anything to the winner. Note that the micro:bit of  the losing player will stop executing the 
while True loop. Note also that the losing player will always have the defender role, the attacker 
cannot lose because none of  his/her ships can be hit before the defender takes the attacker role 
during the next game round. So, in the next round, if  the defender of  the previous round has 
lost, the defender of  the new round will wait forever for the other player to send a hit selection 
point. Taking into account these facts, can you make a final extension to the game so that the 
winner can see an appropriate message in his/her micro:bit? You are free to change any portion 
of  the code to achieve this. 

2. Use random numbers to assign ship positions in the beginning. To do so, you have to use 
the statement import random in your code and then call random.randit(a,b) whenever you want 
to produce a random integer between a and b. Using this function, you can select a ship’s position 
as follows: first, select randomly one of  the five rows or one of  the five columns of  the 5X5 
board. Then position the ship randomly in the selected row or column: if  you want to place a 3-
point ship, select its start position to be between 1 to 3, for a 2-point ship select its start position 
between 1 and 4. Check if  the ship overlaps with an already placed ship and, if  yes, repeat the 
process until there is no conflict. 

4.6 Self  check 

1. In Python, if  we declare a variable in the global scope, we can access it: 

a. From anywhere 

b. From the main program 

c. From functions only 

d. From functions that are defined after the declaration of  the variable 

2. In MicroPython in order to access a global variable from a function, we have to: 

a. Do nothing 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

57 

b. Declare it again in our function 

c. Use the keyword global followed by the name of  the variable before we  
access it 

d. Use the keywords global variable followed by the name of  the variable 
before we access it 

3. In Python, if  we declare a variable inside a function, we can access it: 

a. From anywhere 

b. From the main program 

c. From inside the function 

d. From inside the function, and all functions defined after it 

4. In order to find the number of  characters (length) of  a string saved in a variable 
named s we use: 

a. size(s)  

b. len(s)  

c. characters(s)  

d. print(s)  

5. In order to take only the last word of  the string "Hello World" which is saved in a 
variable named s we use: 

a. s[6:]  

b. s[6:-1]  

c. s[7:11]  

d. s[2]  

6. Objects are: 

a. Strings 

b. Variables 

c. Numbers 

d. All of  the above 

7. Classes are: 

a. Prototypes that define objects of  the same type 

b. Groups of  objects 

c. Both a. and b. 

d. None of  the above 

8. A distinct entity of  the real world can be represented by: 

a. A class 

b. An object 

c. A method 

d. All of  the above 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

58 

9. Function names: 

a. Can start with a "_" character (underscore) 

b. Can be used as objects 

c. Can be assigned to variables 

d. All of  the above 

10. What is the slicing operation that will return a copy of  a string s without its last 
character?  

a. s[0:-1]  

b. s[:len(s)-1]  

c. s[:-1]  

d. all of  the above 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

59 

5. A Quiz Game - Advanced Topics in Python with Micro:Bit 

 
5.1  Aim 

The aim of  this activity is to get more in-depth knowledge of  Python and learn about lists, 
dictionaries and the speech library of  micro:bit. We are going to use only the text-based mode of  
EduBlocks. We do so because the code in this learning activity is rather difficult to develop using 
block-based representation. Furthermore, as we noted in the introduction, the ultimate goal of  
using the dual code representation of  EduBlocks is to gradually get used to text-based coding 
which is the format used by experienced programmers. Our coding project will be a simple quiz 
game that can be very easily extended with new questions. 

5.2 Synopsis 

In the first form of  the quiz game a random question is selected from a predefined list of  
questions and an appropriate oral message is played by micro:bit using the speaker. After that, the 
player has to decide if  the statement was True or False by pressing the button A or B respectively. 
If  the player's answer is correct a happy face is shown on the display, otherwise, a sad one is 
displayed. The player earns one point for each correct answer and loses one for each wrong 
answer. After all the questions have been asked, the score of  the player is shown on the display. 

In the second form of  the quiz game, instead of  using true-false questions, we use multiple-
choice questions. The player can go through the possible choices by pressing the button A 
repeatedly, and by pressing the button B he/she can select the current choice as his/her answer. 
The player can listen to the choices as many times as it is needed. For every correct answer a 
happy face is shown on the display and the player earns one point. For every wrong answer a sad 
face is shown on the display and the player loses one point. After all the questions have been 
announced, the score of  the player is shown on the display. 

5.3 Theory 

5.3.1 Lists and tuples 

In Python lists can be used to manage collections of  values that are stored as a sequence in a 
single variable. We create a list using the brackets [ ], and between them we place as many items as 
we want separated with commas. The items can be of  any type, even other lists. For example, we 
can create a list of  strings containing fruit names as shown below. 

fruits = ["apple", "banana", "cherry"] 

We can print the entire list using print(fruits) and we can access each item individually by its 
index, beginning from 0, just like the characters of  a string. For example, to print the second item 
in the above list we use print(fruits[1]) and the output will be "banana". 

In the case that we want to add yet another fruit name ("orange") at the end of  the list, we use 
the statement fruits.append("orange"). To change an item that is already present in the list, e.g., 
the third item from "cherry" to "strawberry", we use the statement fruits[2] = "strawberry". If  we 
run both of  these commands the new list will be: ["apple", "banana", "strawberry", "orange"]. 
Finally, to remove list items we use the statement fruits.remove("banana"). This last statement will 
change the list to: ["apple", "strawberry", "orange"]. 

Elements in a list need not be necessarily unique. Repetitions are allowed, e.g., in the list of  the 
number of  days per month in a typical year starting from January: days = [31, 28, 31, 30, 31, 30, 
31, 31, 30, 31, 30, 31]. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

60 

The function len() can be used to find the length of  the list, that is, how many elements it 
contains. For example, len([2, 1, 9]) will return 3. 

Negative indices can be used to access elements in the tail of  a list. The last element can be 
accessed with index -1, the element before that with index -2, etc. For example, the following 
code prints the number of  days in November: print("November has ", days[-2], " days.") 

Finally, it is possible to specify slices of  a list using a starting index, an ending index, and an 
optional step. For example, the days of  months in summer are days[5:8] while the days of  
months that start each season (March, June, September, and December) are days[2::3]. It is 
interesting to note that slicing indices can be omitted as it is the case for one of  the ending 
indices in this last example. If  the starting index is omitted, the slice starts from the beginning of  
the list. If  the ending index is omitted, the slice ends at the end of  the list. If  the step is omitted, 
+1 is assumed. Consequently, the notation days[::] will produce a full copy of  the original list 
because all three slicing indices will use the default values. 

Lists can be added and multiplied as well! Adding two lists with the ‘+’ operator produces a new 
list that is the concatenation of  two lists. For example, the expression: [0,1]+[2,3] will evaluate to 
[0,1,2,3]. Multiplication between a list l and an integer k produces a new list with k copies of  l. 
For example [0]*3 will produce [0,0,0] while [0,1]*2 will produce [0,1,0,1].  

To delete or remove an element from a list, there are two alternatives. For example, either del 
days[2] or days.remove(28) will remove the value 28 at the second position of  the days list. Note 
that the first alternative deletes an element at a certain position while the second alternative will 
remove a certain value from a list. If  the value appears more than once, only the first occurrence 
will be removed.  

Apart from lists, Python also supports tuples. Tuples are very similar to lists. They are sequences 
of  elements. They can be handled using the same operators and methods. The only difference 
between tuples and lists is that they cannot be changed. To differentiate their representation 
tuples, use parentheses, whereas lists use square brackets. For example, if  we specify numbers = 
(2, 5, 9) it will be a tuple that could not be changed by operations such as the ones described in 
the previous paragraph. Whenever you want your sequence of  elements to be fixed through the 
rest of  your code, use tuples instead of  lists. 

5.3.2 Dictionaries 

Python dictionaries are used to store data values in key:value pairs. For example, if  we want to 
store information about a car, we could use a dictionary like this: 

car = { 
  "brand": "Ford", 
  "model": "Mustang", 
  "year": 1964 
} 

As another example, we present a dictionary to associate months with the number of  days they 
have in a typical year: 

days = { "January" : 31, "February": 28, "March" : 31, "April" : 30, "May" : 31, "June" : 30, "July" 
: 31, "August" : 31, "September" : 30, "October" : 31, "November" : 30, "December" : 31} 

To access the elements in a dictionary, the brackets notation is used as in lists and tuples. 
However, inside the brackets, keys are used and not numbered indices as in the case of  lists and 
tuples. For example, the following statements can be used to retrieve or change the number of  
days in certain months: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

61 

print("January has ",days["January"]," days.")  
days["February"]=29 

Consequently, there are several alternative ways to define a dictionary: 

 By providing all key:value pairs inside brackets:  

d = {'foo': 100, 'bar': 200, 'baz': 300} 

 By defining one by one its key:value pairs: 

d = {} 
d['foo'] = 100 
d['bar'] = 200 
d['baz'] = 300 

 By creating a dict object with appropriate initialization as a comma separated list 
of  key=value constructs: 

d = dict(foo=100, bar=200, baz=300) 

 By creating a dict object with appropriate initialization as a list of  (key,value) tuples 

d = dict([ 
    ('foo', 100), 
    ('bar', 200), 
    ('baz', 300) 
]) 

Removing an item from a dictionary can be done using pop. For example, to remove the item 
that corresponds to the "year" key of  the car dictionary, we use the statement car.pop("year"). 

5.3.3 For - enumerate 

In order to iterate over the elements of  a list or the characters of  a string we can use a for loop. 
At each iteration, the for loop will take a single item of  the list or a single character of  the string 
and do something with it before moving to the next one. The iterations will continue until it 
reaches the end of  the list or string. For example, if  we want to iterate over a list of  fruits and 
print each item, we would do it like this: 

fruits = ["apple", "banana", "cherry"] 
for fruit in fruits: 
 print(fruit) 

 
 
 

The result of  executing the above code would be to print each item on the list on a separate line. 

In the same way, we would print each character of  a string, but what if  we would like to show the 
number of  the letter next to it? Then we should use the function enumerate() with our for loop 
as shown below. 

text = "Hello!" 
for index, character in enumerate(text): 
 print(index, character) 

#Result 
0 H 
1 e 
2 l 
3 l 
4 o 
5 ! 

What this does is that in every iteration it assigns a pair of  the current character and its index to 
the variables character and index respectively. In general, the enumerate function produces a 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

62 

number each time we iterate in the for loop, starting from zero and incrementing it by one in each 
iteration. It can be used with lists as well. 

5.3.4 Random numbers 

Sometimes in our code it is necessary to be able to produce random numbers. This is very useful 
in games whenever we want our game to operate in a less predictable way so that it is more 
interesting for the player. To be able to produce random numbers, we should import the random 
library first. To produce a random integer between numbers start and stop, we can use 
random.randint(start, stop). For example, the following code will print a random number from 1 
through 10: 

import random 
 
number = random.randint(1, 10) 
print(number) 

If  we want to get a random floating-point number between 1 and 10, we should use 
random.uniform(1, 10). 

Another very interesting operation is to choose a random item from a list. To do so, we use the 
random.choice() and we give the list’s name as an argument. The following code randomly selects 
a fruit name from a list and prints it: 

import random 
 
fruits = ["apple", "banana", "cherry"] 
random_fruit = random.choice(fruits) 
print(random_fruit) 

5.3.5 Try-except 

Sometimes in our code there are parts where we expect an error to occur under certain 
conditions. To deal with such errors and prevent our code from crashing (terminating 
unexpectedly) we use a try-except block. We first specify what we want to do under the try 
statement and under the except statement we specify what we want to do if  the try block fails, i.e., 
if  an error happens (or, to be more precise, an exception). Such an exception could happen if  we 
try to access a non-existing list item. For example, the following code will produce an exception 
as soon the fruit list remains empty (elements are removed one by one). At that point, the except: 
block will be executed and the while True block will be terminated (the break statement will be 
executed). 

import random 
 
fruits = ["apple", "banana", "cherry"] 
while True: 
   try: 
      random_fruit = random.choice(fruits) 
   except: 

      print("No item to print") 
      break 
   fruits.remove(random_fruit) 
   print(random_fruit) 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

63 

5.3.5 Connecting an external speaker with micro:bit 

In the learning activity we are going to use the sound feature of  micro:bit. In the case of  
micro:bit V2, there is a built-in speaker that will output the sounds we want. In the case of  
version 1 micro:bit we need to connect an external speaker or headphones. This is done very 
easily, as shown in the picture below, by connecting Pin0 to the tip and GND to the sleeve of  the 
jack of  our headphones. If  we want to connect an external speaker, we connect Pin0 to the red 
lead and GND to the black lead of  the speaker. 

 
5.4 Practice 

5.4.1 True-False quiz game 

We begin our code by importing the libraries microbit, speech, and random that we will use in 
our code. 

from microbit import * 
import speech 
import random 

Next, we have to create a list which will hold the questions of  the quiz along with their correct 
answers. The questions will be in the form of  dictionaries that have two key:value pairs, the first 
pair storing the question text and the second the correct answer (either True, or False). You can 
create more questions by adding more dictionaries to the questions list. Here is a possible 
initialization: 

questions = [ 
    {"question": "-The capital of  Greece is, Athens.", "correct": True}, 
    {"question": "-The capital of  Germany is, London.", "correct": False}, 
    {"question": "-The capital of  Italy is, Rome.", "correct": True}, 
    {"question": "-The capital of  Poland is, Moscow.", "correct": False}, 
    {"question": "-The capital of  Germany is, Berlin.", "correct": True}, 
    {"question": "-The capital of  Russia is, Moscow.", "correct": True}, 
] 

Now that we know the form of  our questions, we can proceed to create some useful functions. 
First, we create a function named announce_question() which announces the question given to it 
as an argument. To do so we use the speech.say() function from the speech library which takes a 
string as an argument. To access the string of  the question that was given as an argument to the 
function we use question["question"].  

def announce_question(question): 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

64 

    speech.say(question["question"]) 

After that we can create a function named process() which will be in charge of  checking if  the 
answer of  the player was true, showing a happy or sad face on the screen depending on the 
outcome, and returning the points to add or remove from the score. The arguments of  this 
function are the current question and the answer of  the player (True or False).  To access the 
correct answer for the question we use question["correct"]. In the case of  a correct answer, we 
show a happy face and return 1, otherwise, we show a sad face and return -1. 

def process(question, option): 
    if question["correct"] == option: 
        display.show(Image.HAPPY) 
        return 1 
    display.show(Image.SAD) 
    return -1 

We can now create the main loop of  the game. We first initialize the score to 0 and create a while 
True loop. Inside we first choose a question from the questions list using the 
random.choice(questions), which returns one random question. Then we remove the chosen 
question from the list so it does not play again, and call the announce_question() function we 
created giving the chosen question as an argument to be announced. 

score = 0 
while True: 
    question = random.choice(questions) 
    questions.remove(question) 
    announce_question(question) 

We should now wait for the player’s response using a while True loop. Inside the loop, we 
repeatedly check whether button A or B was pressed. We should remember that button A is 
assigned to the True answer and B to the False answer. In the case that the player presses the 
button A we call the function process we created with the current question and the value True as 
arguments. The result of  the process() function (+1 or -1) is added to the score. In the case that 
the player presses button B we do exactly the same but this time we give False instead of  True as 
an argument. In both cases, we break the while True loop that we are in, in order for the game to 
continue to the next question. 

    while True: 
        if button_a.was_pressed(): 
            score += process(question, True) 
            break 
        elif button_b.was_pressed(): 
            score += process(question, False) 
            break 

The last thing to do is to check if  there are any questions left in the list. To do that, we use 
len(questions) which returns the number of  questions in the list. If  the list has 0 questions that 
means that the game is finished and so we break the main loop of  the game. After that we show 
the score of  the player to the display. 

score = 0 
while True: 
    question = random.choice(questions) 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

65 

    questions.remove(question) 
    announce_question(question) 
    while True: 
        if button_a.was_pressed(): 
            score += process(question, True) 
            break 
        elif button_b.was_pressed(): 
            score += process(question, False) 
            break 
    if len(questions) == 0: 
        break 
display.show(score) 

The complete code of  the true-false quiz game is given below: 

from microbit import * 
import speech 
import random 

 

questions = [ 
    {"question": "-The capital of  Greece is, Athens.",  

        "correct": True}, 
    {"question": "-The capital of  Germany is, London.", 

        "correct": False}, 
    {"question": "-The capital of  Italy is, Rome.", 

        "correct": True}, 
    {"question": "-The capital of  Poland is, Moscow.", 

        "correct": False}, 
    {"question": "-The capital of  Germany is, Berlin.", 

        "correct": True}, 
    {"question": "-The capital of  Russia is, Moscow.", 

        "correct": True}, 
] 

 

def announce_question(question): 
    speech.say(question["question"]) 

 

def process(question, option): 
    if question["correct"] == option: 
        display.show(Image.HAPPY) 
        return 1 
    display.show(Image.SAD) 
    return -1 

 

score = 0 

 
while True: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

66 

    question = random.choice(questions) 
    questions.remove(question) 
    announce_question(question) 

    while True: 
        if button_a.was_pressed(): 
            score += process(question, True) 
            break 
        elif button_b.was_pressed(): 
            score += process(question, False) 
            break 
    if len(questions) == 0: 
        break 

 

display.show(score) 

5.4.2 Multiple choice quiz game 

As an extension of  the quiz game, we can create one that will use multiple-choice questions 
instead of  True-False questions. The same libraries as before are imported and we create a list 
named questions. The form of  the questions in this new quiz game will be dictionaries with three 
key:value pairs. The first one is the text of  the question as it was in the True-False quiz game. The 
second key:value pair provides a list of  possible choices for the answer to the question. The last 
key:value pair provides the index of  the correct answer in the previous list of  choices. Remember 
that the indexes of  a list begin from 0, not 1, which means that for example, the third choice has 
the index 2. The code below implements all these ideas and can be extended with more multiple-
choice questions. 

from microbit import * 
import speech 
import random 
 
questions = [ 
    { 
        "question": "-The capital of  Greece is,", 
        "options": ["-Rome", "-Athens", "-Berlin", "-Paris"], 
        "correct": 1, 
    }, 
    { 
        "question": "-The capital of  Germany is,", 
        "options": ["-Rome", "-Athens", "-Berlin", "-Paris"], 
        "correct": 2, 
    } 
] 

Next, we will develop a function that will use the speech.say() function to give a question to the 
player. The function will also announce the choices that the player has. This is done with a while 
True loop which repeatedly cycles through the options when the player presses button A and 
stops when button B is pressed. To do that, we first need a for loop to iterate over the list of  
options, which not only gives us the options but also its index in the list. We need the index in 
order to give it as an argument to the process function which checks if  the option we selected is 
the correct one. To get the indexes of  the options we use the enumerate(question["options"]) in 
the for loop.  



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

67 

def make_question(question): 
    speech.say(question["question"]) 
    sleep(1000) 

    while True: 
        for i, opt in enumerate(question["options"]): 

            speech.say(opt) 
            while True: 
                if button_a.was_pressed(): 
                    break 
                elif button_b.was_pressed(): 
                    return process(question, i) 

Note that inside the for loop in the code we announce the current option and enter a while True 
loop which waits for an input from the player. In the case that button A is pressed we break the 
loop and let the for loop iterate to the next option. If  the for reaches the end of  the options list, it 
exits, but because we are also in a while True loop it starts again from the beginning. If  button B 
is pressed, we call the process() function with the current question and the current option’s index 
as arguments to check if  the player’s selection was correct. The result of  the process function is 
then returned, which exits all the loops we are in. 

The process function that we have created in the first version of  the game remains unchanged: 

def process(question, option): 
    if question["correct"] == option: 
        display.show(Image.HAPPY) 
        return 1 
    display.show(Image.SAD) 
    return -1 

We can now set the score to 0 and enter our main game while True loop. Here, in order to stop the 
execution of  the game when the questions list is empty, instead of  checking the length of  the list 
we use a try-except statement. First, we try to get a random choice from the list and if  we succeed, 
the game continues. In the case that the list is empty the random choice function will fail and 
throw an IndexError exception, which we then handle by breaking the main loop of  the game and 
thus ending the game.  

After we make a random selection from the list of  questions, we remove that question from the 
list so it would not be used again. Then we add to the score the outcome of  the make_question() 
function to which we give the chosen question as an argument. Finally, we display the score of  
the player. 

score = 0 
while True: 
    try: 
        question = random.choice(questions) 
    except IndexError: 
        break 
    questions.remove(question) 
    score += make_question(question) 
 
display.show(score) 

The completed code of  the multiple-choice quiz game is given below: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

68 

from microbit import * 
import speech 
import random 
 
questions = [ 
    { 
        "question": "-The capital of  Greece is,", 
        "options": ["-Rome", "-Athens", "-Berlin", "-Paris"], 
        "correct": 1, 
    }, 
    { 
        "question": "-The capital of  Germany is,", 
        "options": ["-Rome", "-Athens", "-Berlin", "-Paris"], 
        "correct": 2, 
    } 
] 

 

def make_question(question): 
    speech.say(question["question"]) 
    sleep(1000) 

    while True: 
        for i, opt in enumerate(question["options"]): 

            speech.say(opt) 
            while True: 
                if button_a.was_pressed(): 
                    break 
                elif button_b.was_pressed(): 
                    return process(question, i) 

 

def process(question, option): 
    if question["correct"] == option: 
        display.show(Image.HAPPY) 
        return 1 
    display.show(Image.SAD) 
    return -1 

 

score = 0 

 
while True: 
    try: 
        question = random.choice(questions) 
    except IndexError: 
        break 
    questions.remove(question) 
    score += make_question(question) 

 
display.show(score) 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

69 

5.5 Time for fun 

Here are some ideas for extending the quiz games: 

1. Modify the true-false game to give a certain amount of  time to the player to answer each 
question. If  no answer is given within the time limit, the player loses the question. Another 
option would be to offer to the player a total time limit for the whole game. The player continues 
answering questions till the time limit is reached. 

2. Modify the multiple-choice game so that it does not stop after the presentation of  the 
questions but continues with all the questions that were not answered correctly by the player. 
This is repeated until the player answers all the questions correctly. The score is computed the 
same way: +1 point for each correct answer and -1 point for each wrong answer. 

3. Modify the multiple-choice game so that the questions are classified in three categories: 
easy, medium, and difficult. Each category corresponds to different points: +1/-1 for easy 
questions, +2/-2 for medium questions, and +3/-3 for difficult questions. Revise as required the 
code to handle the player’s score following these new rules. Present the letters E, M, and D in the 
LED matrix when an easy, medium, or difficult question is announced respectively. 

5.6 Self  check 

1. Lists can be used to: 

a. Store multiple items in one variable 

b. Store any sequence of  values of  a certain data type 

c. Store any sequence of  values including values of  different data types 

d. All of  the above 

2. To create a list, we put all the items between: 

a. Parentheses ( ) 

b. Brackets [ ] 

c. Curly brackets { } 

d. Quotes " " 

3. We separate the items of  a list by: 

a. Commas , 

b. Dots . 

c. Dashes - 

d. Spaces  

4. To create a dictionary, we put all items (key:value pairs) inside: 

a. Parentheses ( ) 

b. Brackets [ ] 

c. Curly brackets { } 

d. Quotes "" 

5. We separate a dictionary's pairs by: 

a. Commas , 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

70 

b. Dots . 

c. Dashes - 

d. Spaces  

6. We separate the key and value of  a pair in a dictionary by a: 

a. Semicolon ; 

b. Dot . 

c. Dash - 

d. Colon : 

7. If  we want to print every item of  a list or a dictionary by iteration we use: 

a. The print() function  

b. A for loop 

c. An appropriate print() function inside a for loop 

d. None of  the above 

8. If  we want to print every item of  a list enumerated we use: 

a. The print() function 

b. A for loop 

c. A print-enumerate loop 

d. A for loop with enumerate and a print() function inside it 

9. To choose a random item from a list named L we use: 

a. random(L)  

b. L.random_choice()  

c. L.random.choice()  

d. random.choice(L)  

10. When we expect a part of  our code to fail, in order to protect our program from 
crashing, we place it inside a: 

a. try block 

b. except block 

c. if statement 

d. try-except block 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

71 

6. Introduction to Raspberry Pi Pico 

 
6.1 Aim 

The aim of  this activity is to learn about another microcontroller that can be programmed with 
MicroPython, namely Raspberry Pi Pico. It is more powerful compared to the micro:bit and has a 
lot more memory in order to support bigger and more complex programs. 

6.2 Synopsis 

In this activity we will create a single-player game. The game will consist of  an array of  five 
LEDs (1 red & 4 blue) which light up one after the other. The goal is to pause the blinking of  the 
LEDs when the red LED is on, using a button as user input. 

6.3 Theory 

6.3.1 What is the Raspberry Pi Pico 

The Raspberry Pi Pico is a microcontroller board, similar to the micro:bit, but more powerful. It 
has a lot more GPIO pins while also supporting more communication protocols. It can be 
programmed with various languages including MicroPython which we have also used for 
programming the micro:bit. The following picture presents the Raspberry Pi Pico board. 

 

To set up the Raspberry Pi Pico with MicroPython you have to follow the instructions that are 
given through the official site of  Raspberry Pi. They can be found here: Getting started with 
Raspberry Pi Pico - Add the MicroPython firmware | Raspberry Pi Projects  

6.3.2 Pinout 

The back side of  the Raspberry Pi Pico shows us the position and the number of  each GPIO, 
power, ground and ADC pin. The secondary functions of  the GPIO pins are shown in the 
following pinout description. 

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3


 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

72 

 

All of  the 26 GPIO pins are PWM capable but only up to 16 can be used simultaneously. 

6.3.3 Micro:bit vs Raspberry Pi Pico 

The following list compares the BBC micro:bit V2 to the Raspberry Pi Pico. We observe that the 
micro:bit has more ADC capable pins, more built-in sensors, and a screen with LEDs on-board 
but the Pico has more GPIO overall, more communication ports, and a lot more memory. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

73 

 

6.3.4 Classes 

A Python class is a prototype for an object that defines a set of  attributes that characterize any 
object of  the class. The attributes can be either data attributes or methods, accessed via dot 
notation.  

For example, let's say that we want to create a program that manages people. We can create a 
class named Person with an initializer that assigns values to the instance variables of  the person. 
The initializer has the name __init__ and takes as arguments the desired values for the instance 
variables of  the object we want to create. When we declare an initializer, we must always include 
the self  object in its arguments and use it with dot notation to access the attributes of  the newly 
created object. An example class is shown below: 

class Person: 
    def __init__(self, name, age): 
        self.name = name 
        self.age = age 

The way that we assign the given values to the properties of  self  is as shown above. Now, in 
order to create objects of  this class, we must use the so-called class instantiation. Class 
instantiation uses function notation. Just pretend that the class object is a function that returns a 
new instance of  the class. The arguments that you should use are the ones that have been defined 
in the class initializer just after self.  The following code creates two instances of  the Person class:  

p1 = Person("John", 22) 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

74 

p2 = Person("George", 34) 

An example of  a method for the Person class could be to introduce oneself, which is a very 
common action for a person. Below is shown how we can create the method, create an object 
and then call its method to introduce itself. 

class Person: 
    def __init__(self, name, age): 
        self.name = name 
        self.age = age 
     
    def introduce(self): 
        print("Hello, my name is " + self.name) 
     
p1 = Person("John", 22) 

print("Hello, my name is " + p1.name) 
p1.introduce() 

The output of  the above code is “Hello, my name is John” twice. You can see that in order to 
access the data that we saved to the object we use self.name inside the class and p1.name outside 
the class. 

Note that not all classes require an initializer, especially those with no member (instance) 
variables. 

6.3.5 Electronic components 

In this activity we are going to use some electronic components such as LEDs, buttons, 
potentiometers, and servo motors. So, we need to get familiar with these components first. 

LEDs 

 

Light Emitting Diodes or LEDs are semiconductors that emit light when they are connected 
properly to a power source. An LED consists of  two lead connectors, one of  which is smaller 
than the other one. The longer lead is the anode (+) of  the LED and the short one is the cathode 
(-). The LED will light up only when we connect it the right way: The anode to positive voltage 
and the cathode to the ground. LEDs usually work fine with 3.3 Volts but, when we work with 
more Volts than that, we must always use resistors to protect them from overcurrent. For 
example, if  we use 5 Volts and a common 5mm LED, we can use a 330 Ohm resistor to be safe. 

Buttons 

 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

75 

Buttons are like switches and can be used to control the flow of  electricity. When we intersect a 
button on a line, there is no flow of  electricity until we press it. In our activity, a button will be 
used as user input.  

Buttons suffer from an effect called switch bouncing, which for fast microcontrollers means that 
when we press or release them, they oscillate from close to open a few times. To solve this, we 
connect a capacitor in parallel with the button.  

When we do not press the button, the pin that it is connected to is left hanging, meaning that the 
Pico cannot decide if  it is in a HIGH state or LOW state. To solve this, we enable a pull-down 
resistor on that pin in order to keep the pin’s state to LOW until we press the button. 

Potentiometers 

 

Potentiometers are essentially variable resistors. There is a knob that can be rotated in order to 
select the desired resistance. They are labeled with their maximum resistance. In our activity, we 
are going to use them for selecting the speed of  the LEDs flashing. We connect GND and 
3.3VOUT of  the Raspberry Pi Pico to the edge pins and we measure the resistance using the 
middle pin attached to an ADC capable pin of  the Raspberry Pi Pico.  

Servo Motors 

 

Servos are PWM-controlled motors that move relatively slowly and can rotate their axle to the 
desired position extremely accurately. Their range of  motion is usually 180 degrees.  

Pulse Width Modulation (PWM) is a way to control the pulse width (on time) of  a signal. For 
example, for a PWM signal that is on for half  the time and off  for the rest, we say that it has a 
duty cycle of  50%. If  the signal’s frequency is 50Hz (20ms period), this results in a 10ms pulse 
width. The most common servos (SG90) operate between 1ms and 2ms, with 1ms being the 0-
degree position and 2ms being the 180-degree position. To achieve this range of  pulse widths, we 
have to generate duty cycles from 5% to 10%. Because the SG90 servos are usually cheaply made, 
in order to compensate for small variances between them we adjust the range to 2% for 0 degrees 
and 12.5% for 180 degrees.  

6.3.6 Interrupts 

In computers and microcontrollers, when we want to wait for an event to happen, e.g., a button 
press, we can set up an interrupt. The first thing we could do in order to detect a button press is 
to continuously check the pin of  the button to see if  it is currently being pressed. This has two 
disadvantages, one being that it takes too much computing power for such a simple task, and also 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

76 

depending on other tasks that our code executes it is possible to miss a short (quick) button 
press. To solve this problem, we can use interrupts, which, when set up properly, never miss these 
events and do not check continuously.  When a button press is detected, the microcontroller (or 
processor) is notified and immediately stops the execution of  our main code, executes a function 
that we created (interrupt/event handler), and then continues with our main code. You can easily 
observe that the interrupt handler must be really fast and usually is only one line of  code. This is 
important in order for the interrupt to be handled fast and the execution of  the main code to be 
stopped only for a few nanoseconds.  

In order to set up an interrupt, start by creating the following circuit. Connect one side of  the button to 
the GP0 and the other to 3.3VOUT. 

 

For the code, we begin by importing the Pin class from the machine module. Next, we create the 
interrupt handler function which only prints “Button Pressed”. After that, we have to declare a 
Pin for the button as input and also enable the pull-down resistor of  the Raspberry Pi Pico. The 
pull-down resistor is essential because when we do not press the button the GP0 pin of  the 
Raspberry Pi Pico is left hanging and can easily pick interference from the environment, making 
it go HIGH or LOW unexpectedly. The pull-down resistor prevents that by pulling GP0 to LOW. 
This resistor is weak so it can easily be overwritten by the 3.3V of  the button. The last thing we 
have to do is to actually enable the interrupt on the button pin. We do that by passing to the 
method button.irq() the name of  our interrupt handler and also the trigger mode which can be 
Pin.IRQ_RISING or Pin.IRQ_FALLING. In our case, when we press the button, the level starts 
from LOW and then becomes HIGH so we are going to use Pin.IRQ_RISING. 

from machine import Pin 
 
def handle_button_press(button): 
    print("Button Pressed") 
 
button = Pin(0, Pin.IN, Pin.PULL_DOWN) 
button.irq(handler=handle_button_press, trigger=Pin.IRQ_RISING) 

To upload the above code to Raspberry Pi Pico and try it, read the following subsection first. 

 6.3.7 Thonny Python IDE 

In order to program the Raspberry Pi Pico, we need a code editor where we can write our code 
and then upload it to the board. We will use the Thonny editor. To download it, go to 
https://thonny.org/. Once you have finished downloading and installing Thonny, open it and 
you should see the following interface. Some useful icons are shown in the toolbar just under the 
menu bar. The first toolbar icon is used to create a new file, the second one is used to open an 
existing file, the third one is used to save the current file, the fourth one is used to execute the 

https://thonny.org/


 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

77 

code of  the current file and the last one is used to stop the execution of  any code. The rest of  
the buttons are used to debug the code of  the currently opened file, i.e., to execute it step-by-step 
to inspect its operation so that you can find any bugs. Sometimes the fourth icon may be 
disabled, which means that there is a code being executed right now and in order to enable it you 
have to press the stop button first. 

 

To proceed, we need to connect the Raspberry Pi Pico to our computer. Next, we have to inform 
Thonny that we are writing code for the Raspberry Pi Pico. To do that, we press click on the 
bottom right corner where it says Python 3.7.9 or some other version number. From there we 
select the option “MicroPython (Raspberry Pi Pico)”. In case this option is not available, select 
“Configure interpreter…”. Under the “Which interpreter or device should Thonny use for 
running your code?” there is a drop-down list from which you can select “MicroPython 
(Raspberry Pi Pico)” and then press OK. 

Now we are ready for our first code. If  you look at the pinout diagram, on the top of  the 
Raspberry Pi Pico there is a pin named LED (GP25). This pin connects to an integrated LED on 
the board which we can control from GP25. First, we have to import the Pin class from the 
machine module, in order to control any GPIO. 

from machine import Pin 

After that, we have to declare which pin we are going to use and also its direction. GPIO pins 
have two directions, OUT or IN and, in order to easily differentiate between them, we should 
think if  the current gets OUT of  the pin or IN the pin. In our case, the current gets OUT of  the 
pin in order to power the LED, so we declare the pin 25 as output by creating an object and 
assigning it to a variable as follows: 

led = Pin(25, Pin.OUT) 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

78 

Now, in order to turn the led on or off, we can simply call the on or off  methods of  the led 
object. 

led.on() 

led.off() 

We can now press the play button in order to run our code on the Raspberry Pi Pico and observe 
that the onboard LED lights up when led.on() is executed. The LED is turned off  when led.off() 
is executed. When we are prompted to save the file, we can choose to save it on our computer. 

6.4 Practice 

We will start this learning activity by creating a circuit that connects one button, one red LED, 
and four blue LEDs to the Raspberry Pi Pico board. The LEDs are connected to pins GP0, 
GP1, GP2, GP3, and GP4, and the button to the pin GP5. 

 

The first thing we have to do in our code is to import the Pin class and sleep function from 
machine and time modules respectively. We need those in order to control the GPIO pins and to 
create some delays whenever it is needed. 

from machine import Pin 
from time import sleep 

Next, we have to create the classes for all of  the components we are going to use. The first class 
we are going to create is for the Led. It will have an initializer that will take the pin number and 
the LED color as arguments. Also, it will have two methods for turning the LED on and off. In 
the initializer we also declare the Pin for the LED as output and save it to a member variable 
named pin. 

class Led: 
    def __init__(self, pin_number, color): 
        self.color = color 
        self.pin = Pin(pin_number, Pin.OUT) 
 
    def on(self): 
        self.pin.on() 
 
    def off(self): 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

79 

        self.pin.off() 

We can test the above code by creating an object for the onboard LED which is connected to 
GP25 and turning it on and off. 

led = Led(25, "Green") 
led.on() 
sleep(1) 
led.off() 

Another class we have to create is for the button. It will have an initializer that takes the 
pin_number as an argument. Also, this class will have a method that returns if  the button was 
pressed (as we had with micro:bit) and the interrupt handler. The initializer declares the button 
pin as input and enables the pull-down resistor on that pin. It also initializes the pressed variable 
to False since the button has not yet been pressed and finally sets up the interrupt. The 
was_pressed method returns True if  the button was pressed, otherwise, it returns False. Before it 
returns True, it has to reset the state of  the pressed member variable. The 
handle_button_pressed method just changes the state of  the pressed member variable to True. 

class Button: 
    def __init__(self, pin_number): 
        self.pin = Pin(pin_number, Pin.IN, Pin.PULL_DOWN) 
        self.pressed = False 
        self.pin.irq(handler=self.handle_button_pressed, trigger=Pin.IRQ_RISING) 
 
    def was_pressed(self): 
        if (self.pressed): 
            self.pressed = False 
            return True 
        return False 
 
    def handle_button_pressed(self, pin): 
        self.pressed = True 

The last class we have to create is called Display. The actual display consists of  5 LEDs which we 
want to control from this class. Consequently, the initializer of  this new class just takes a list of  
LED objects as an argument and initializes the position of  the LED to be turned on to 0. Also, it 
has a method that turns off  the currently lit LED and turns on the next one. If  it has reached the 
last LED, it continues with the first one again. In this whole process, the member variable 
position is updated in order to keep in memory which LED is currently lit. Another method is 
used in order to retrieve the color of  the currently lit LED. Two more methods light all LEDs on 
or off. 

class Display: 
    def __init__(self, leds): 
        self.leds = leds 
        self.position = 0 
 
    def next_led(self): 
        self.leds[self.position].off() 
        self.position += 1 
        if self.position >= len(self.leds): 
            self.position = 0 
        self.leds[self.position].on() 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

80 

         
    def color(self): 
        return self.leds[self.position].color 
     
    def all_on(self): 
        for led in self.leds: 
            led.on() 
     
    def all_off(self): 
        for led in self.leds: 
            led.off() 

Now that every class we are going to need is ready, we can continue to the main part of  our code. 
We begin by creating a list of  Led objects giving the pin_number and color of  each Led we have 
connected. Next, we create a Button passing the pin number of  the button and a Display object 
passing the list of  Led objects: 

leds = [Led(0, "Blue"), Led(1, "Blue"), Led(2, "Blue"), Led(3, "Blue"), Led(4, "Red")] 
button = Button(5) 
display = Display(leds) 

For the last part of  our code, we create a while True loop so our game can run forever. Inside, 
while the button is not pressed, we light up the next LED of  the display after 0.1 seconds. Once 
the button is pressed, we check if  the color of  the currently lit LED is "Blue" and, if  it is, we 
light all the LEDs of  the display for 2 seconds to indicate that the player lost. Otherwise, if  the 
LED’s color is "Red", we keep it on for 2 seconds to indicate that the player has stopped the 
game at the desired point/LED. 

while True: 
    while not button.was_pressed(): 
        display.next_led() 
        sleep(0.1) 
    if display.color() == "Blue": 
        display.all_on() 
        sleep(2) 
        display.all_off() 
    else: 
        sleep(2) 

Extension 1: 

We can extend our game by adding a potentiometer, with which we will control the speed of  the 
LEDs flashing. Start by adding a potentiometer to your circuit as shown below. Connect the left 
most pin of  the potentiometer to 3.3V, the rightmost pin to the GND, and the middle one to the 
ADC0 (GP26) pin of  Raspberry Pi Pico. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

81 

 

In our code, we have to create a new class for the potentiometer, named Potentiometer. Inside it 
we will have an initializer that takes the pin number of  the potentiometer as an argument. The 
class will also have a method that reads and returns the position of  the potentiometer. 

from machine import Pin, ADC 

 
class Potentiometer: 
 def __init__(self, pin_number): 
  self.pin = ADC(Pin(pin_number)) 
 
 def value(self): 
  return self.pin.read_u16() 

The read_u16 method returns a value from 0 to 65535, which is a really big range if  we want to 
use it for the delay as is. To solve this in our code, we will divide the value returned from the 
method by 100000, which will result in a range from 0 to 0.65535. This way we can replace the 
0.1 second delay with the above expression as explained. 

leds = [Led(0, "Blue"), Led(1, "Blue"), Led(2, "Blue"), Led(3,    "Blue"), Led(4, 
"Red")] 
button = Button(5) 
display = Display(leds) 
pot = Potentiometer(26) 
 
while True: 
    while not button.was_pressed(): 
        display.next_led() 
        sleep(pot.value()/100000) 
    if display.color() == "Blue": 
        display.all_on() 
        sleep(2) 
        display.all_off() 
    else: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

82 

        sleep(2) 

Upload the code to the Raspberry Pi Pico and try adjusting the speed of  the game using the 
potentiometer. 

Extension 2: 

We can extend our game even more by creating a scoreboard using a servo motor and a paper (or 
3D printed) board with distinct scores drawn in a semi-circle. Each time the player hits the right 
LED, the servo moves clockwise, and otherwise it turns counterclockwise, indicating the current 
score. First, create the following circuit using the SG90 servo and by connecting the brown wire 
to GND, the red wire to VBUS, and the orange/yellow wire to GP6. 

 

Now we can continue by creating a Servo class in our code. This class will have an initializer and 
a method called angle for controlling the position of  the servo’s axle. The initializer takes as an 
argument the pin_number, creates a PWM/Pin instance, then sets the frequency of  PWM to 50Hz 
and initializes the servo position at 0. The angle method takes as an argument the desired angle, 
which must be between 0 and 180. Otherwise, if  it is bigger, it will be set to 180 and, if  it is 
smaller, it will be set to 0. To set the duty cycle of  our PWM signal we use the Pin’s method 
duty_u16 which takes a value from 0 to 65535 as an argument. To convert the angle given to us 
into a value for the method we use the formula (angle*38)+1311. 

class Servo: 
    def __init__(self, pin_number): 
        self.pin = PWM(Pin(pin_number)) 
        self.pin.freq(50) 
        self.angle(0) 
     
    def angle(self, angle): 
        if angle<0: 
            angle = 0 
        elif angle>180: 
            angle = 180 
        self.pin.duty_u16((angle*38)+1311) 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

83 

Next, we have to create a class named Points that keeps and updates the score. The initializer of  
this class takes a Servo class instance as an argument and initializes the member variable named 
points to 0. The class also has two methods named won and lost that handle point winning and 
losing and also update the servo position. Since the 180 distinct positions are too many, we can 
increase or decrease the points by 10 which will translate to 18 distinct positions. 

class Points: 
    def __init__(self, servo): 
        self.points = 0 
        self.servo = servo 
         
    def won(self): 
        self.points += 10 
        self.servo.angle(self.points) 
         
    def lost(self): 
        self.points -= 10 
        self.servo.angle(self.points) 

To use our new classes, we first create a Servo instance giving the pin number 6 as an argument 
and then we pass the Servo instance to the initializer of  the Points class. 

servo = Servo(6) 
points = Points(servo) 

The last thing we have to do is to call the won method of  Points when we stop the game on the 
correct LED. Otherwise, we call the lost method. The main loop of  our code will now look like 
this. 

while True: 
    while not button.was_pressed(): 
        display.next_led() 
        sleep(pot.value()/100000) 
    if display.color() == "Blue": 
        points.lost() 
        display.all_on() 
        sleep(2) 
        display.all_off() 
    else: 
        points.won() 
        sleep(2) 

When creating the code, pay attention that on top we put the imports, and below them we define 
the classes followed by the instance creation and then finally our main loop. 

6.5 Time for fun 

Here are some ideas for further extension of  the game: 

1. Replace the rightmost blue LED with a red one. Revise the code so that the flashing of  
the LEDs goes from right to left and then from left to right. The player has to press the button 
when any of  the two red LEDs are on in order to win. 

2. Change the previous extension by putting two blue LEDs at the left and the right end and 
a red LED in the middle. In order to win, the player has to press the button when the red LED is 
on. Revise the code to achieve this way of  operation with the new setting of  the LEDs. 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

84 

3. Put a time limit to the game duration. The player can continue playing until the time limit 
is reached. 

6.6 Self  check 

1. The initializer of  a Class is a method named: 

a. initializer 

b. init 

c. __init__ 

d. Class 

2. An LED: 

a. Stands for Light Emitting Diode 

b. May or may not need a resistor in series, depending on the input voltage 

c. Has polarity 

d. All of  the above 

3. Potentiometers are: 

a. Variable resistors 

b. Variable capacitors 

c. Fixed value resistors 

d. Fixed value capacitors 

4. Buttons: 

a. Are used like switches that intercept a circuit 

b. Need a resistor parallel to them 

c. Need a capacitor parallel to them 

d. None of  the above 

5. Servos rotate to 0 degrees and 180 degrees when they receive a pulse width of: 

a. 0ms and 180ms respectively 

b. 1ms and 2ms respectively 

c. 0.5ms and 1.5ms respectively 

d. 0ms and 1ms respectively 

6. Interrupts: 

a. Stop the normal execution of  our code to run usually a single line of  code 
before returning to normal execution 

b. Occur after an event, for example, button press 

c. Both a. and b. 

d. Occur only when a signal goes from LOW to HIGH 

7. To define a Pin instance as an input, we pass to the initializer, together with the 
pin number: 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

85 

a. The value INPUT 

b. The value Pin.INPUT 

c. The value Pin.OUT 

d. The value Pin.IN 

8. To turn a Pin instance on and off, we call the methods: 

a. On and off 

b. High and low 

c. Open and close 

d. Up and down 

9. To make sure that a pin connected to a button is not left hanging, we usually 
enable a: 

a. Pull-up resistor 

b. Pull-down resistor 

c. Parallel capacitor 

d. None of  the above 

10. Classes: 

a. Are prototypes of  objects 

b. Are objects 

c. Must always have an initializer 

d. None of  the above 



 
 

The European Commission's support for the production of  this publication does not 
constitute an endorsement of  the contents, which reflect the views only of  the authors, and 
the Commission cannot be held responsible for any use which may be made of  the 
information contained therein. 

86 

References 

 
MAKERS website: https://makers-project.eu/  

Tutorials for learning Python: https://www.learnpython.org/ 

Teaching programming using concepts of  cooking and cooking recipes: 

http://www.xandaschofield.com/2016/02/teaching-computer-science-with-

cookies.html 

Micro:bit site: https://microbit.org/ 

Scratch site: https://scratch.mit.edu/   

Raspberry Pi Pico: https://www.raspberrypi.com/products/raspberry-pi-pico/  

Github repository with the complete code presented in this module: 

https://github.com/tucmakers/moduleA   

 

https://makers-project.eu/
https://www.learnpython.org/
http://www.xandaschofield.com/2016/02/teaching-computer-science-with-cookies.html
http://www.xandaschofield.com/2016/02/teaching-computer-science-with-cookies.html
https://microbit.org/
https://scratch.mit.edu/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://github.com/tucmakers/moduleA

